메뉴 건너뛰기




Volumn 15, Issue 1, 2000, Pages 25-30

Prediction on lengths of stay in the Postanesthesia Care Unit following general anesthesia: Preliminary study of the neural network and logistic regression modelling

Author keywords

Neural Network (Computer); Postoperative Care; Recovery Room

Indexed keywords

ADULT; ANESTHETIC RECOVERY; ARTICLE; ARTIFICIAL NEURAL NETWORK; FEMALE; GENERAL ANESTHESIA; HUMAN; LENGTH OF STAY; MALE; METHODOLOGY; POSTOPERATIVE CARE; PREDICTION AND FORECASTING; RECOVERY ROOM; RETROSPECTIVE STUDY; STATISTICAL MODEL;

EID: 0034132018     PISSN: 10118934     EISSN: None     Source Type: Journal    
DOI: 10.3346/jkms.2000.15.1.25     Document Type: Article
Times cited : (23)

References (17)
  • 2
    • 0028864144 scopus 로고
    • Practical cost-effective choices: Ambulatory general anesthesia
    • Philip BK. Practical cost-effective choices: ambulatory general anesthesia. J Clin Anesth 1995; 7: 606-13.
    • (1995) J Clin Anesth , vol.7 , pp. 606-613
    • Philip, B.K.1
  • 3
    • 0028104554 scopus 로고
    • Cost comparison: A desflurane-versus a propofol-based general anesthetic technique
    • Rosenberg MK, Bridge P, Brown M. Cost comparison: a desflurane-versus a propofol-based general anesthetic technique. Anesth Analg 1994; 79: 852-5.
    • (1994) Anesth Analg , vol.79 , pp. 852-855
    • Rosenberg, M.K.1    Bridge, P.2    Brown, M.3
  • 4
    • 0028820907 scopus 로고
    • Analysis of strategies to decrease postanesthesia care unit
    • Dexter F, Tinker JH. Analysis of strategies to decrease postanesthesia care unit. Anesthesiology 1995; 82: 94-101.
    • (1995) Anesthesiology , vol.82 , pp. 94-101
    • Dexter, F.1    Tinker, J.H.2
  • 6
    • 0029006699 scopus 로고
    • Artificial neural network predictions of lengths of stay on a post-coronary care unit
    • Mobley BA, Leasure R, Davidson L. Artificial neural network predictions of lengths of stay on a post-coronary care unit. Heart Lung 1995; 24: 251-6.
    • (1995) Heart Lung , vol.24 , pp. 251-256
    • Mobley, B.A.1    Leasure, R.2    Davidson, L.3
  • 7
    • 0028285351 scopus 로고
    • A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit
    • Buchman TG, Kubos KL, Seidler AJ, Siegforth MJ. A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit. Critl Care Med 1994; 22: 750-62.
    • (1994) Critl Care Med , vol.22 , pp. 750-762
    • Buchman, T.G.1    Kubos, K.L.2    Seidler, A.J.3    Siegforth, M.J.4
  • 8
    • 0001867238 scopus 로고
    • Interpreting neural network connection weights
    • Garson GD. Interpreting neural network connection weights. AI Expert 1991; 6: 47-51.
    • (1991) AI Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 9
    • 0027288642 scopus 로고
    • Use of a neural network as predictive instrument for length of stay in the intensive care unit following cardiac surgery
    • Tu JV, Guerriere MR. Use of a neural network as predictive instrument for length of stay in the intensive care unit following cardiac surgery. Comput Biomed Res 1993; 26: 220-9.
    • (1993) Comput Biomed Res , vol.26 , pp. 220-229
    • Tu, J.V.1    Guerriere, M.R.2
  • 10
    • 0031658768 scopus 로고    scopus 로고
    • Postanesthesia care unit length of stay: Quantifying and assessing dependent factors
    • Waddle JP, Evers AS, Piccirillo JF. Postanesthesia care unit length of stay: quantifying and assessing dependent factors. Anesth Analg 1998; 87: 628-33.
    • (1998) Anesth Analg , vol.87 , pp. 628-633
    • Waddle, J.P.1    Evers, A.S.2    Piccirillo, J.F.3
  • 12
    • 24344451986 scopus 로고    scopus 로고
    • Improved anesthesia care through computer technology in the operating room
    • Reich DL. Improved anesthesia care through computer technology in the operating room. Refresher Course in Anesthesiology 1996; 24: 221-31.
    • (1996) Refresher Course in Anesthesiology , vol.24 , pp. 221-231
    • Reich, D.L.1
  • 14
    • 0027651266 scopus 로고
    • Neural networks and nonlinear regression modelling and control of depth of anaesthesia for spontaneously breathing and ventilated patients
    • Rehman HU, Linkens DA, Asbury AJ. Neural networks and nonlinear regression modelling and control of depth of anaesthesia for spontaneously breathing and ventilated patients. Comput Methods Programs Biomed 1993; 40: 227-47.
    • (1993) Comput Methods Programs Biomed , vol.40 , pp. 227-247
    • Rehman, H.U.1    Linkens, D.A.2    Asbury, A.J.3
  • 15
    • 0027469602 scopus 로고
    • Integration of monitoring for intelligent alarms in anesthesia: Neural networks-can they help?
    • Mylrea KC, Orr JA, Westenskow DR. Integration of monitoring for intelligent alarms in anesthesia: neural networks-can they help? J Clin Monit 1993; 9: 31-7.
    • (1993) J Clin Monit , vol.9 , pp. 31-37
    • Mylrea, K.C.1    Orr, J.A.2    Westenskow, D.R.3
  • 16
    • 0030249087 scopus 로고    scopus 로고
    • A study of electroencephalographic descriptors and end-tidal concentration in estimating depth of anesthesia
    • Muthuswamy J, Sharma A. A study of electroencephalographic descriptors and end-tidal concentration in estimating depth of anesthesia. J Clin Monit 1996; 12: 353-64.
    • (1996) J Clin Monit , vol.12 , pp. 353-364
    • Muthuswamy, J.1    Sharma, A.2
  • 17
    • 0028393180 scopus 로고
    • A breathing circuit alarm system based on neural networks
    • Orr JA, Westenskow DR. A breathing circuit alarm system based on neural networks. J Clin Monit 1994; 10: 101-9.
    • (1994) J Clin Monit , vol.10 , pp. 101-109
    • Orr, J.A.1    Westenskow, D.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.