메뉴 건너뛰기




Volumn 8, Issue 1, 2000, Pages 49-59

Modular neural network modelling for long-range prediction of an evaporator

Author keywords

Evaporators; Model based predictive control; Modular modelling; Neural networks; Prediction; Simulation

Indexed keywords

COMPUTER SIMULATION; EVAPORATORS; PREDICTIVE CONTROL SYSTEMS;

EID: 0034023490     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0967-0661(99)00123-9     Document Type: Article
Times cited : (21)

References (18)
  • 1
  • 4
    • 0000873069 scopus 로고
    • A method for the solution of certain nonlinear problems in least squares
    • Levenberg K. A method for the solution of certain nonlinear problems in least squares. Quarterly of Applied Mathematics. 2:1944;164-168.
    • (1944) Quarterly of Applied Mathematics , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 10
    • 0003464265 scopus 로고
    • Technical Report CMU-CS-90-196, Carnegie Mellon University, Pittsburgh, PA
    • Pearlmutter, B.A. (1990). Dynamic recurrent neural networks. Technical Report CMU-CS-90-196, Carnegie Mellon University, Pittsburgh, PA.
    • (1990) Dynamic Recurrent Neural Networks
    • Pearlmutter, B.A.1
  • 11
    • 0006559098 scopus 로고
    • Modelling dynamic behaviour of multiple-effect falling-film evaporators
    • H.T. Bussemaker, & P.D. Iedema. Amsterdam: Elsevier
    • Quaak P., Gerritsen J.B.M. Modelling dynamic behaviour of multiple-effect falling-film evaporators. Bussemaker H.T., Iedema P.D. Computer applications in chemical engineering. 1990;59-64 Elsevier, Amsterdam.
    • (1990) Computer Applications in Chemical Engineering , pp. 59-64
    • Quaak, P.1    Gerritsen, J.B.M.2
  • 12
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart, McClelland J.L. Cambridge, MA, USA: MIT Press
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Rumelhart D.E., McClelland J.L. Parallel distributed processing. vol 1:1986;318-362 MIT Press, Cambridge, MA, USA.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 15
    • 0026868901 scopus 로고
    • Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach
    • Su H.-T., McAvoy J., Werbos P. Long-term predictions of chemical processes using recurrent neural networks. A parallel training approach Industrial Engineering Chemistry Research. 31:1992;1338-1352.
    • (1992) Industrial Engineering Chemistry Research , vol.31 , pp. 1338-1352
    • Su, H.-T.1    McAvoy, J.2    Werbos, P.3
  • 16
    • 0025503558 scopus 로고
    • Backpropagation through time: What it is and how to do it
    • Werbos P.J. Backpropagation through time. what it is and how to do it Proceedings of the IEEE. 78:1990;1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 17
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation. 1:1989;270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.