메뉴 건너뛰기




Volumn 50, Issue 1, 2000, Pages 101-105

Development of a generalized neural network

Author keywords

Algorithms; Calibration set; Neural networks

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; CALIBRATION; CHEMOMETRICS; NONLINEAR SYSTEM; PREDICTION; PRIORITY JOURNAL; QUANTITATIVE STRUCTURE ACTIVITY RELATION;

EID: 0033964996     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0169-7439(99)00051-9     Document Type: Article
Times cited : (14)

References (19)
  • 1
    • 0025732436 scopus 로고
    • Neural networks: A new method for solving chemical problems or just a passing phase
    • Zupan J., Gasteiger J. Neural networks: a new method for solving chemical problems or just a passing phase. Anal. Chim. Acta. 248:1991;1-30.
    • (1991) Anal. Chim. Acta , vol.248 , pp. 1-30
    • Zupan, J.1    Gasteiger, J.2
  • 2
    • 0027320868 scopus 로고
    • Neural networks in analytical chemistry?
    • Kateman G. Neural networks in analytical chemistry? Chemom. Intell. Lab. Syst. 19:1993;135-142.
    • (1993) Chemom. Intell. Lab. Syst. , vol.19 , pp. 135-142
    • Kateman, G.1
  • 5
    • 0025403609 scopus 로고
    • Improvement of the backpropagation algorithm for training neural networks
    • Leonard J., Kramer M.A. Improvement of the backpropagation algorithm for training neural networks. Comput. Chem. Eng. 14:1990;337-341.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 337-341
    • Leonard, J.1    Kramer, M.A.2
  • 6
    • 84984299789 scopus 로고
    • Adaptive, global, extended Kalman filters for training feedforward neural networks
    • Blank T.B., Brown S.D. Adaptive, global, extended Kalman filters for training feedforward neural networks. J. Chemom. 8:1994;391-407.
    • (1994) J. Chemom. , vol.8 , pp. 391-407
    • Blank, T.B.1    Brown, S.D.2
  • 7
    • 0000684468 scopus 로고
    • Temperature-constrained backpropagation neural networks
    • Harrington P.B. Temperature-constrained backpropagation neural networks. Anal. Chem. 66:1994;802-807.
    • (1994) Anal. Chem. , vol.66 , pp. 802-807
    • Harrington, P.B.1
  • 8
    • 0028463965 scopus 로고
    • A novel algorithm for local minimum escape in back-propagation neural networks: Application to the interpretation of matrix isolation infrared spectra
    • Klawun C., Wilkins C.L. A novel algorithm for local minimum escape in back-propagation neural networks: application to the interpretation of matrix isolation infrared spectra. J. Chem. Inf. Comput. Sci. 34:1994;984-993.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 984-993
    • Klawun, C.1    Wilkins, C.L.2
  • 9
    • 4243326588 scopus 로고
    • Improved training of neural networks with complex search spaces
    • Kyoto, Japan
    • F. Stäger, M. Agarwal, Improved training of neural networks with complex search spaces, IFAC Advanced Control of Chemical Processes, Kyoto, Japan, 1994, pp. 65-70.
    • (1994) IFAC Advanced Control of Chemical Processes , pp. 65-70
    • Stäger, F.1    Agarwal, M.2
  • 11
    • 0029864769 scopus 로고    scopus 로고
    • Neural networks with robust backpropagation learning algorithm
    • Walczak B. Neural networks with robust backpropagation learning algorithm. Anal. Chim. Acta. 322:1996;21-29.
    • (1996) Anal. Chim. Acta , vol.322 , pp. 21-29
    • Walczak, B.1
  • 13
    • 0025168031 scopus 로고
    • Evolution in chemometrics
    • Kateman G. Evolution in chemometrics. Analyst. 115:1990;487-493.
    • (1990) Analyst , vol.115 , pp. 487-493
    • Kateman, G.1
  • 14
    • 0025826285 scopus 로고
    • Genetic algorithms for large-scale optimization in chemometrics: An application
    • Lucasius C.B., Kateman G. Genetic algorithms for large-scale optimization in chemometrics: an application. Trends Anal. Chem. 247:1991;254-261.
    • (1991) Trends Anal. Chem. , vol.247 , pp. 254-261
    • Lucasius, C.B.1    Kateman, G.2
  • 15
    • 0025822022 scopus 로고
    • Comparison of the training of neural networks for quantitative X-ray fluorescence spectrometry by a genetic algorithm and backward error propagation
    • Bos M., Weber H.T. Comparison of the training of neural networks for quantitative X-ray fluorescence spectrometry by a genetic algorithm and backward error propagation. Anal. Chim. Acta. 247:1991;97-105.
    • (1991) Anal. Chim. Acta , vol.247 , pp. 97-105
    • Bos, M.1    Weber, H.T.2
  • 16
    • 0010939994 scopus 로고    scopus 로고
    • Network training and architecture optimization be a recursive approach and a modified genetic algorithm
    • Jiang J.-H., Wang J.-H., Song X.-H., Yu R.Q. Network training and architecture optimization be a recursive approach and a modified genetic algorithm. J. Chemom. 10:1996;253-267.
    • (1996) J. Chemom. , vol.10 , pp. 253-267
    • Jiang, J.-H.1    Wang, J.-H.2    Song, X.-H.3    Yu, R.Q.4
  • 17
    • 0343052762 scopus 로고    scopus 로고
    • GINN (Genetic Inside Neural Network): Towards a non-parametrics training
    • Sánches M.S., Sarabia L.A. GINN (Genetic Inside Neural Network): towards a non-parametrics training. Anal. Chim. Acta. 348:1997;533-542.
    • (1997) Anal. Chim. Acta , vol.348 , pp. 533-542
    • Sánches, M.S.1    Sarabia, L.A.2
  • 18
    • 0028232831 scopus 로고
    • On better generalization by combining two or more models: A quantitative structure-activity relationship example using neural networks
    • Ajay On better generalization by combining two or more models: a quantitative structure-activity relationship example using neural networks. Chemom. Intell. Lab. Syst. 24:1994;19-30.
    • (1994) Chemom. Intell. Lab. Syst. , vol.24 , pp. 19-30
    • Ajay1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.