메뉴 건너뛰기




Volumn 32-33, Issue , 2000, Pages 385-390

Introduction of threshold self-adjustment improves the convergence in feature-detective neural nets

Author keywords

Synaptic adaptation; Threshold dynamics; Unsupervised learning

Indexed keywords

BRAIN MODELS; CELLS; COGNITIVE SYSTEMS; DIFFERENTIAL EQUATIONS; LEARNING SYSTEMS; MATHEMATICAL MODELS;

EID: 0033940004     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(00)00190-9     Document Type: Article
Times cited : (4)

References (8)
  • 1
    • 0342841446 scopus 로고    scopus 로고
    • Memory model with unsupervised sequential learning: The effect of threshold self-adjustment
    • A. Gorchetchnikov, Memory model with unsupervised sequential learning: the effect of threshold self-adjustment. Proceedings of the 37th Southeast ACM Conference, 1999, pp. 236-242.
    • (1999) Proceedings of the 37th Southeast ACM Conference , pp. 236-242
    • Gorchetchnikov, A.1
  • 2
    • 0033326070 scopus 로고    scopus 로고
    • Limitations on the connection weights due to the introduction of threshold self-adjustment
    • CD-ROM (IEEE Catlog No. 99CH 36339 C).
    • A. Gorchetchnikov, Limitations on the connection weights due to the introduction of threshold self-adjustment. Proceedings of the Third International Joint Conference on Neural Networks, 1999, CD-ROM (IEEE Catlog No. 99CH 36339 C).
    • (1999) Proceedings of the Third International Joint Conference on Neural Networks
    • Gorchetchnikov, A.1
  • 3
    • 0030248165 scopus 로고    scopus 로고
    • Suppression of synaptic transmission may allow combination of associative feedback and self-organizing feedforward connections in the neocortex
    • Hasselmo M., Cekic M. Suppression of synaptic transmission may allow combination of associative feedback and self-organizing feedforward connections in the neocortex. Behav. Brain Res. 79:1996;153-161.
    • (1996) Behav. Brain Res. , vol.79 , pp. 153-161
    • Hasselmo, M.1    Cekic, M.2
  • 4
    • 0000248309 scopus 로고
    • Neural networks with dynamical thresholds
    • Horn D., Usher M. Neural networks with dynamical thresholds. Phys. Rev. A. 40:1989;1036-1044.
    • (1989) Phys. Rev. a , vol.40 , pp. 1036-1044
    • Horn, D.1    Usher, M.2
  • 5
    • 0001858447 scopus 로고
    • Cellular mechanisms of learning and the biological basis of individuality
    • E. Kandel, & J. Schwartz. New York: Elsevier
    • Kandel E. Cellular mechanisms of learning and the biological basis of individuality. Kandel E., Schwartz J. Principles of Neural Science. 1985;816-833 Elsevier, New York.
    • (1985) Principles of Neural Science , pp. 816-833
    • Kandel, E.1
  • 7
    • 0343276254 scopus 로고    scopus 로고
    • Multi-modular associative memory
    • M. Jordan, M. Kearns, & S. Solla. Cambridge, MA: MIT Press
    • Levy N., Horn D., Ruppin E. Multi-modular associative memory. Jordan M., Kearns M., Solla S. Advances in Neural Processing Systems, 10. 1998;52-58 MIT Press, Cambridge, MA.
    • (1998) Advances in Neural Processing Systems, 10 , pp. 52-58
    • Levy, N.1    Horn, D.2    Ruppin, E.3
  • 8
    • 0343276252 scopus 로고
    • Signal processing in multi-threshold neurons
    • T. McKenna, J. Davis, & S. Zornetzer. San Diego, CA: Academic Press
    • Tam D. Signal processing in multi-threshold neurons. McKenna T., Davis J., Zornetzer S. Single Neuron Computation. 1992;481-502 Academic Press, San Diego, CA.
    • (1992) Single Neuron Computation , pp. 481-502
    • Tam, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.