-
1
-
-
0001882773
-
Refinement-based student modeling and automated bug library construction
-
Baffes, P. & Mooney, R. (1996). Refinement-based student modeling and automated bug library construction. Journal of Artificial Intelligence in Education, 7, 75-116.
-
(1996)
Journal of Artificial Intelligence in Education
, vol.7
, pp. 75-116
-
-
Baffes, P.1
Mooney, R.2
-
3
-
-
0011909134
-
Conceptual clustering and exploratory data analysis
-
Biswas, G., Weinberg, J., Yang, Q., & Koller, G. (1991). Conceptual clustering and exploratory data analysis. Proceedings of the Eighth International Workshop on Machine Learning (pp. 591-595).
-
(1991)
Proceedings of the Eighth International Workshop on Machine Learning
, pp. 591-595
-
-
Biswas, G.1
Weinberg, J.2
Yang, Q.3
Koller, G.4
-
4
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
Fisher, T. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2, 139-172.
-
(1987)
Machine Learning
, vol.2
, pp. 139-172
-
-
Fisher, T.1
-
7
-
-
84899829959
-
A formal basis for the heuristic determination of minimum cost paths
-
Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Sience and Cybernetics, 4, 100-107.
-
(1968)
IEEE Transactions on Systems, Sience and Cybernetics
, vol.4
, pp. 100-107
-
-
Hart, P.1
Nilsson, N.2
Raphael, B.3
-
8
-
-
0025385101
-
Understanding and debugging novice programs
-
Johnson, W. L. (1990). Understanding and debugging novice programs. Artificial Intelligence, 42, 51-97.
-
(1990)
Artificial Intelligence
, vol.42
, pp. 51-97
-
-
Johnson, W.L.1
-
10
-
-
46149142725
-
Integrated learning: Controlling explanation
-
Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive Science, 10, 219-240.
-
(1986)
Cognitive Science
, vol.10
, pp. 219-240
-
-
Lebowitz, M.1
-
11
-
-
0000166613
-
Experiments with incremental concept formation: UNIMEM
-
Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine Learning, 2, 103-138.
-
(1987)
Machine Learning
, vol.2
, pp. 103-138
-
-
Lebowitz, M.1
-
12
-
-
0038823372
-
Automatic debugging of Prolog programs in a Prolog intelligent tutoring system
-
Looi, C. (1991). Automatic debugging of Prolog programs in a Prolog intelligent tutoring system. Instructional Science, 20, 215-263.
-
(1991)
Instructional Science
, vol.20
, pp. 215-263
-
-
Looi, C.1
-
13
-
-
0142032695
-
The central importance of student modeling to intelligent tutoring
-
E. Costa (Ed.), Berlin, Springer Verlag
-
McCalla, G. (1992). The central importance of student modeling to intelligent tutoring. In E. Costa (Ed.), New directions for intelligent tutoring systems, Berlin, Springer Verlag.
-
(1992)
New Directions for Intelligent Tutoring Systems
-
-
McCalla, G.1
-
14
-
-
0003046842
-
Learning from observation: Conceptual clustering
-
R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Palo Alto, CA: Tioga
-
Michalski, R. & Stepp, R. (1983). Learning from observation: conceptual clustering. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning: an artificial intelligence approach. Palo Alto, CA: Tioga.
-
(1983)
Machine Learning: An Artificial Intelligence Approach
-
-
Michalski, R.1
Stepp, R.2
-
15
-
-
0003268983
-
Explanation-based generalization: A unifying view
-
Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based generalization: A unifying view. Machine Learning, 1, 47-80.
-
(1986)
Machine Learning
, vol.1
, pp. 47-80
-
-
Mitchell, T.1
Keller, R.2
Kedar-Cabelli, S.3
-
16
-
-
0343541518
-
The role of explanation in elementary physics learning
-
This issue
-
Neri, F. (1999). The role of explanation in elementary physics learning. Machine Learning, This issue.
-
(1999)
Machine Learning
-
-
Neri, F.1
-
17
-
-
0006460167
-
Learning causal patterns: Making a transition from data-driven to theory-driven learning
-
R. Michalski & G. Tecuci (Eds.), San Francisco, CA: Morgan Kaufmann
-
Pazzani, M. (1994). Learning causal patterns: making a transition from data-driven to theory-driven learning. In R. Michalski & G. Tecuci (Eds.), Machine learning: a multistrategy approach (Vol. IV, pp. 267-293). San Francisco, CA: Morgan Kaufmann.
-
(1994)
Machine Learning: A Multistrategy Approach
, vol.4
, pp. 267-293
-
-
Pazzani, M.1
-
18
-
-
0001602577
-
A note on inductive generalization
-
Plotkin, G. (1970). A note on inductive generalization. Machine Intelligence, 5, 153-163.
-
(1970)
Machine Intelligence
, vol.5
, pp. 153-163
-
-
Plotkin, G.1
-
19
-
-
0029308579
-
Automated refinement of first-order Horn-clause domain theories
-
Richards, B. & Mooney, R. (1995). Automated refinement of first-order Horn-clause domain theories. Machine Learning, 19, 95-131.
-
(1995)
Machine Learning
, vol.19
, pp. 95-131
-
-
Richards, B.1
Mooney, R.2
-
21
-
-
0342671240
-
-
Ph.D. Thesis, Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan
-
Sison, R. (1998). Multistrategy discovery and detection of novice programmer errors. Ph.D. Thesis, Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan.
-
(1998)
Multistrategy Discovery and Detection of Novice Programmer Errors
-
-
Sison, R.1
-
24
-
-
0025388980
-
Extending domain theories: Two case studies in student modeling
-
Sleeman, D., Hirsh, H., Ellery, I., & Kim, I. (1990). Extending domain theories: Two case studies in student modeling. Machine Learning, 5, 11-37.
-
(1990)
Machine Learning
, vol.5
, pp. 11-37
-
-
Sleeman, D.1
Hirsh, H.2
Ellery, I.3
Kim, I.4
-
27
-
-
58149411184
-
Features of similarity
-
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.
-
(1977)
Psychological Review
, vol.84
, pp. 327-352
-
-
Tversky, A.1
-
28
-
-
0023151233
-
Learning one procedure per lesson
-
VanLehn, K. (1987). Learning one procedure per lesson. Artificial Intelligence, 31, 1-40.
-
(1987)
Artificial Intelligence
, vol.31
, pp. 1-40
-
-
VanLehn, K.1
-
29
-
-
0001237155
-
On the interaction of theory and data in concept learning
-
Wisniewski, E. & Medin, D. (1994). On the interaction of theory and data in concept learning. Cognitive Science, 18, 221-281.
-
(1994)
Cognitive Science
, vol.18
, pp. 221-281
-
-
Wisniewski, E.1
Medin, D.2
|