-
10
-
-
0010063221
-
-
Binder, K.; Ciccotti, G., Eds.; Società Italiana di Fisica: Bologna
-
Kremer, K. In Monte Carlo and Molecular Dynamics of Condensed Matter Systems; Binder, K.; Ciccotti, G., Eds.; Società Italiana di Fisica: Bologna, 1996; p 669-723.
-
(1996)
Monte Carlo and Molecular Dynamics of Condensed Matter Systems
, pp. 669-723
-
-
Kremer, K.1
-
15
-
-
0031582775
-
-
Grassberger, P.; Sutter, P.; Schäfer, L. J Phys A: Math Gen 1997, 30, 7039.
-
(1997)
J Phys A: Math Gen
, vol.30
, pp. 7039
-
-
Grassberger, P.1
Sutter, P.2
Schäfer, L.3
-
16
-
-
0343138130
-
-
Sutter, P.; Schäfer, L.; Grassberger, P. Int J Mod Phys B 1998, 12, 1397.
-
(1998)
Int J Mod Phys B
, vol.12
, pp. 1397
-
-
Sutter, P.1
Schäfer, L.2
Grassberger, P.3
-
17
-
-
0002863784
-
-
Laradji, M.; Guo, H.; Zuckermann, M. J. Phys Rev E 1994, 49, 3199.
-
(1994)
Phys Rev E
, vol.49
, pp. 3199
-
-
Laradji, M.1
Guo, H.2
Zuckermann, M.J.3
-
18
-
-
84881573780
-
-
Soga, K. G.; Guo, H.; Zuckermann, M. J. Europhys Lett 1995, 29, 531.
-
(1995)
Europhys Lett
, vol.29
, pp. 531
-
-
Soga, K.G.1
Guo, H.2
Zuckermann, M.J.3
-
19
-
-
0000576152
-
-
Soga, K. G.; Zuckermann, M. J.; Guo, H. Macromolecules 1996, 29, 1998.
-
(1996)
Macromolecules
, vol.29
, pp. 1998
-
-
Soga, K.G.1
Zuckermann, M.J.2
Guo, H.3
-
20
-
-
0001050766
-
-
Miao, L.; Guo, H.; Zuckermann, M. J. Macromolecules 1996, 29, 2289.
-
(1996)
Macromolecules
, vol.29
, pp. 2289
-
-
Miao, L.1
Guo, H.2
Zuckermann, M.J.3
-
21
-
-
0033185245
-
-
Besold, G.; Hassager, O.; Mouritsen, O. G. Comput Phys Commun 1999, 121/122, 542.
-
(1999)
Comput Phys Commun
, vol.121-122
, pp. 542
-
-
Besold, G.1
Hassager, O.2
Mouritsen, O.G.3
-
22
-
-
0342268588
-
-
to be published
-
Besold, G., to be published.
-
-
-
Besold, G.1
-
23
-
-
21844483292
-
-
Li, B.; Madras, N.; Sokal, A. D. J Stat Phys 1995, 80, 661.
-
(1995)
J Stat Phys
, vol.80
, pp. 661
-
-
Li, B.1
Madras, N.2
Sokal, A.D.3
-
24
-
-
0342268586
-
-
note
-
This expectation is supported by the fact that a mean-field estimate for the scaling exponent v (cf. Scaling Relations and Distribution Functions subsection) can analytically be obtained for our discrete Edwards model, which coincides with the well-known, mean-field estimate v = 3/5 (Flory value) for the 3D SAW.
-
-
-
-
31
-
-
0003133090
-
-
Lal, M. Mol Phys 1996, 17, 57.
-
(1996)
Mol Phys
, vol.17
, pp. 57
-
-
Lal, M.1
-
32
-
-
0000790809
-
-
MacDonald, B.; Jan, N.; Hunter, D. L.; Steinitz, M. O. J Phys A: Math Gen 1985, 18, 2627.
-
(1985)
J Phys A: Math Gen
, vol.18
, pp. 2627
-
-
MacDonald, B.1
Jan, N.2
Hunter, D.L.3
Steinitz, M.O.4
-
34
-
-
0342703806
-
-
note
-
3.
-
-
-
-
37
-
-
0343138126
-
-
note
-
6 MCS.
-
-
-
-
40
-
-
18144371644
-
-
Baker, Jr., G. A.; Nickel, B. G.; Meiron, D. L. Phys Rev B 1978, 17, 1365.
-
(1978)
Phys Rev B
, vol.17
, pp. 1365
-
-
Baker G.A., Jr.1
Nickel, B.G.2
Meiron, D.L.3
-
49
-
-
0343138107
-
-
note
-
N( · ) it should always be evident which probability density is meant.
-
-
-
-
53
-
-
0343573966
-
-
note
-
The precise value of this RG estimate for γ depends on the value of a renormalized coupling constant, which is not known exactly, compare the discussion in ref. 54.
-
-
-
-
54
-
-
0001353614
-
-
Caracciolo, S.; Causo, M. S.; Pelissetto, A. Phys Rev E 1998, 57, 1215.
-
(1998)
Phys Rev E
, vol.57
, pp. 1215
-
-
Caracciolo, S.1
Causo, M.S.2
Pelissetto, A.3
-
57
-
-
0343573964
-
-
note
-
From the RG estimates θ = 0.275 and t = 2.427 (refs. 43, 44) one finds C = 0.2996 and K = 1.2714, and from the estimates θ = 0.268 and t = 2.425 derived from MC estimates for v (ref. 29) and γ (ref. 54) via eqs 19 and 21, we obtain C = 0.2987 and K = 1.2700. The corresponding two graphs of the RdC form of f(x) are almost indistinguishable.
-
-
-
-
58
-
-
0001115350
-
-
Domb, C.; Gillis, J.; Wilmer, G. Proc Phys Soc 1965, 85, 625.
-
(1965)
Proc Phys Soc
, vol.85
, pp. 625
-
-
Domb, C.1
Gillis, J.2
Wilmer, G.3
-
63
-
-
0026414051
-
-
Rubio, A. M.; Freire, J. J.; Horta, A. H.; Ferández de Piérola, I. Macromolecules 1991, 24, 5167.
-
(1991)
Macromolecules
, vol.24
, pp. 5167
-
-
Rubio, A.M.1
Freire, J.J.2
Horta, A.H.3
Ferández De Piérola, I.4
-
64
-
-
0001337090
-
-
Rey, A.; Freire, J. J.; Garcia de la Torre, J. Polymer 1992, 33, 3477.
-
(1992)
Polymer
, vol.33
, pp. 3477
-
-
Rey, A.1
Freire, J.J.2
Garcia De La Torre, J.3
-
66
-
-
21844503496
-
-
Everaers, R.; Graham, I. S.; Zuckermann, M. J. J Phys A: Math Gen 1995, 28, 1271.
-
(1995)
J Phys A: Math Gen
, vol.28
, pp. 1271
-
-
Everaers, R.1
Graham, I.S.2
Zuckermann, M.J.3
-
67
-
-
0343138110
-
-
Wittkop, M.; Kreitmeier, S.; Göritz, D. J Chem Phys 1996, 104, 351.
-
(1996)
J Chem Phys
, vol.104
, pp. 351
-
-
Wittkop, M.1
Kreitmeier, S.2
Göritz, D.3
-
68
-
-
0031539885
-
-
Jorge, S.; Freire, J. J.; Rey, A. Macromol Theory Simul 1997, 6, 271.
-
(1997)
Macromol Theory Simul
, vol.6
, pp. 271
-
-
Jorge, S.1
Freire, J.J.2
Rey, A.3
-
69
-
-
0343138108
-
-
note
-
2, and cov(u, v) = 〈uv〉 - 〈u〉〈v〉 are the sample variances and covariance, respectively. With increasing N the correlation diminishes slightly, from ρ(N = 10) ≈ 85 to p(N = 237) ≈ 0.79, with p(N = 100) ≈ 0.80.
-
-
-
-
70
-
-
0343573950
-
-
note
-
N(u) shifts with decreasing N to smaller u values.
-
-
-
-
71
-
-
84914789483
-
-
erratum Europhys Lett 1995, 30, 123
-
Sokal, A. D. Europhys Lett 1994, 27, 661; erratum Europhys Lett 1995, 30, 123.
-
(1994)
Europhys Lett
, vol.27
, pp. 661
-
-
Sokal, A.D.1
-
72
-
-
0343138106
-
-
note
-
This result remains correct even if slightly different parameter values t and θ are used in the asymptotic RdC ansatz in eqs 22 and 23a,b.
-
-
-
-
73
-
-
0343138104
-
-
Djordjevic, Z. V.; Majid, I.; Stanley, H. E.; dos Santos, R. J. J Phys A: Math Gen 1982, 18, 2627.
-
(1982)
J Phys A: Math Gen
, vol.18
, pp. 2627
-
-
Djordjevic, Z.V.1
Majid, I.2
Stanley, H.E.3
Dos Santos, R.J.4
-
75
-
-
0342703785
-
-
note
-
Here the superscript "t" indicates the transpose.
-
-
-
-
76
-
-
0004161838
-
-
Cambridge University Press: Cambridge; Chapter 10.9
-
We used the routine "amebsa," as published in Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, 1992; Chapter 10.9.
-
(1992)
Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Ed.
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
77
-
-
0343573282
-
-
note
-
2 divided by the number of the degrees of freedom (here 16), at the position of the global minimum is 1.51.
-
-
-
-
78
-
-
0343573283
-
-
Kelly, K.; Hunter, D. L.; Jan, N. J Phys A: Math Gen 1987, 20, 5029.
-
(1987)
J Phys A: Math Gen
, vol.20
, pp. 5029
-
-
Kelly, K.1
Hunter, D.L.2
Jan, N.3
|