메뉴 건너뛰기




Volumn 21, Issue 5, 2000, Pages 365-373

On post-clustering evaluation and modification

Author keywords

Cluster validity; Clustering; Density; Fuzzy c means algorithm; Image segmentation

Indexed keywords

ALGORITHMS; COLOR IMAGE PROCESSING; DATA STRUCTURES; FUZZY SETS; IMAGE ANALYSIS; IMAGE QUALITY; IMAGE SEGMENTATION; VECTORS;

EID: 0033750246     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(00)00003-9     Document Type: Article
Times cited : (7)

References (16)
  • 1
    • 0019438013 scopus 로고
    • A clustering performance measure based on fuzzy set decomposition
    • Backer E., Jain A.K. A clustering performance measure based on fuzzy set decomposition. IEEE Trans. Pattern Anal. Mach. Intel. PAMI-3:1981;66-75.
    • (1981) IEEE Trans. Pattern Anal. Mach. Intel. , vol.3 , pp. 66-75
    • Backer, E.1    Jain, A.K.2
  • 3
    • 0030149087 scopus 로고    scopus 로고
    • Validity-guided (re)clustering with applications to image segmentation
    • Bensaid, A.M, et al., 1996. Validity-guided (re)clustering with applications to image segmentation. IEEE Trans. Fuzzy Systems 4, 112-123.
    • (1996) IEEE Trans. Fuzzy Systems , vol.4 , pp. 112-123
    • Bensaid, A.M.1
  • 7
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • Fukunaga K., Hostetler L.D. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inform. Theory. IT-21:1975;32-40.
    • (1975) IEEE Trans. Inform. Theory , vol.21 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.D.2
  • 10
    • 0029539558 scopus 로고
    • A gradient procedure for determining clusters of relatively high point density
    • Kowalewski F. A gradient procedure for determining clusters of relatively high point density. Pattern Recognition. 28(12):1995;1973-1984.
    • (1995) Pattern Recognition , vol.28 , Issue.12 , pp. 1973-1984
    • Kowalewski, F.1
  • 11
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan G.W., Cooper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika. 50(2):1985;159-179.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 12
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC-9(1):1979;62-66.
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 13
  • 14
    • 0017526520 scopus 로고
    • Cluster analysis using seed points and density-determined hyperspheres as an aid to global optimization
    • Torn A.A. Cluster analysis using seed points and density-determined hyperspheres as an aid to global optimization. IEEE Trans. Syst. Man Cybern. SMC-7(8):1977;610-616.
    • (1977) IEEE Trans. Syst. Man Cybern. , vol.7 , Issue.8 , pp. 610-616
    • Torn, A.A.1
  • 15
    • 0020152832 scopus 로고
    • Cluster validity for the fuzzy c-means clustering algorithm
    • Windham M.P. Cluster validity for the fuzzy c-means clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intel. PAMI-4:1982;357-363.
    • (1982) IEEE Trans. Pattern Anal. Mach. Intel. , vol.4 , pp. 357-363
    • Windham, M.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.