메뉴 건너뛰기




Volumn 22, Issue 4, 2000, Pages 378-384

Fusion of intelligent agents for thé detection of aircraft in SAR images

Author keywords

Automatic target recognition; Fusion

Indexed keywords

ARTIFICIAL INTELLIGENCE; COLOR IMAGE PROCESSING; FUZZY SETS; IMAGE ANALYSIS; IMAGE SENSORS; SYNTHETIC APERTURE RADAR;

EID: 0033722199     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/34.845380     Document Type: Article
Times cited : (35)

References (12)
  • 1
    • 0025404523 scopus 로고    scopus 로고
    • Survey of Neural Network Technology for Automatic Target Recognition
    • vol. 1, no. 1, pp. 28-33, Mar. 1990.
    • M.R. Roth, Survey of Neural Network Technology for Automatic Target Recognition," IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 28-33, Mar. 1990.
    • IEEE Trans. Neural Networks
    • Roth, M.R.1
  • 2
    • 0022757287 scopus 로고    scopus 로고
    • Automatic Target Recognition: State of the Art Survey
    • vol. 22, no. 4, pp. 364-379, July 1986.
    • B. Bhanu, Automatic Target Recognition: State of the Art Survey," IEEE Aerospace Electronic Systems, vol. 22, no. 4, pp. 364-379, July 1986.
    • IEEE Aerospace Electronic Systems
    • Bhanu, B.1
  • 3
    • 33748204376 scopus 로고    scopus 로고
    • Automatic Target Recognition Panel Report
    • IntT Corp., San Diego, Calif., Dec. 1988.
    • M Gyer, Automatic Target Recognition Panel Report," Report ET-TAR002, Science Applications IntT Corp., San Diego, Calif., Dec. 1988.
    • Report ET-TAR002, Science Applications
    • Gyer, M.1
  • 5
    • 33748129820 scopus 로고    scopus 로고
    • Automatic Target Detection for the INGARRA Airborne Radar Surveillance System
    • Ingara-210, pp. 1-12, Aug. 1994.
    • N. Stacy, R. Smith, and G. Nash, Automatic Target Detection for the INGARRA Airborne Radar Surveillance System," D.S.T.O. internal report, Ingara-210, pp. 1-12, Aug. 1994.
    • D.S.T.O. Internal Report
    • Stacy, N.1    Smith, R.2    Nash, G.3
  • 9
    • 0026900840 scopus 로고    scopus 로고
    • Performance Evaluation for Four Classes of Textural Features,"
    • vol. 25, pp. 819-833, 1992.
    • P.P. Ohanian and R.C. Dubes, Performance Evaluation for Four Classes of Textural Features," Pattern Recognition, vol. 25, pp. 819-833, 1992.
    • Pattern Recognition
    • Ohanian, P.P.1    Dubes, R.C.2
  • 11
    • 0029766698 scopus 로고    scopus 로고
    • Towards a Unifying Optimal Approach to Mine Detection Problems
    • vol. 2,765, pp. 2-13, 1996.
    • [II] J. Goutsias, Towards a Unifying Optimal Approach to Mine Detection Problems," SP1E, vol. 2,765, pp. 2-13, 1996.
    • SP1E
    • Goutsias, I.I.J.1
  • 12
    • 0032714931 scopus 로고    scopus 로고
    • Using Genetic Algorithms and Neural Networks for Surface Land Mine Detection
    • vol. 47, no. 1, pp. 176-186, Jan. 1999.
    • A. Filippidis, L.C. Jain, and N. Martin, Using Genetic Algorithms and Neural Networks for Surface Land Mine Detection," IEEE Trans. Signal Processing, vol. 47, no. 1, pp. 176-186, Jan. 1999.
    • IEEE Trans. Signal Processing
    • Filippidis, A.1    Jain, L.C.2    Martin, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.