메뉴 건너뛰기




Volumn 30, Issue 3, 2000, Pages 403-418

Self-segmentation of sequences: automatic formation of hierarchies of sequential behaviors

Author keywords

[No Author keywords available]

Indexed keywords

HIERARCHICAL LEARNING; REINFORCEMENT LEARNING; SELF SEGMENTATION OF SEQUENCES; SEQUENTIAL DECISION MAKING;

EID: 0033720075     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/3477.846230     Document Type: Article
Times cited : (25)

References (45)
  • 1
    • 0028545292 scopus 로고
    • Downward refinement and the efficiency of hierarchical problem solving
    • F. Bacchus and Q. Yang, "Downward refinement and the efficiency of hierarchical problem solving," Artif. Intell., vol. 71, no. 1, pp. 43-100, 1994.
    • (1994) Artif. Intell. , vol.71 , Issue.1 , pp. 43-100
    • Bacchus, F.1    Yang, Q.2
  • 4
    • 0008815094 scopus 로고
    • Reinforcement learning with perceptual aliasing: The perceptual distinction approach
    • San Mateo, CA
    • L. Chrisman, "Reinforcement learning with perceptual aliasing: The perceptual distinction approach," in Proc. AAAI. San Mateo, CA, 1993, pp. 183-188.
    • (1993) Proc. AAAI , pp. 183-188
    • Chrisman, L.1
  • 7
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. Elman, "Finding structure in time," Cognitive Sci., vol. 14, pp. 179-212, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-212
    • Elman, J.1
  • 8
    • 0029521061 scopus 로고
    • Recurrent neural networks and prior knowledge for sequence processing
    • P. Frasconi, M. Gori, and G. Soda, "Recurrent neural networks and prior knowledge for sequence processing," Knowledge Based Syst., vol. 8, no. 6, pp. 313-332, 1995.
    • (1995) Knowledge Based Syst. , vol.8 , Issue.6 , pp. 313-332
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 9
    • 0029560406 scopus 로고
    • Learning a class of large finite state machines with a recurrent neural network
    • C. L. Giles, B. G. Home, and T. Lin, "Learning a class of large finite state machines with a recurrent neural network," Neural Networks, vol. 8, no. 9, pp. 1359-1365, 1995.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1359-1365
    • Giles, C.L.1    Home, B.G.2    Lin, T.3
  • 11
    • 85143168613 scopus 로고
    • Hierarchical learning in stochastic domains: Preliminary results
    • San Francisco, CA
    • L. Kaelbling, "Hierarchical learning in stochastic domains: Preliminary results," in Proc. ICML. San Francisco, CA, 1993, pp. 167-173.
    • (1993) Proc. ICML , pp. 167-173
    • Kaelbling, L.1
  • 13
    • 0039936301 scopus 로고
    • Characterizing abstraction hierarchies for planning
    • San Mateo, CA
    • C. Knoblock, J. Tenenberg, and Q. Yang, "Characterizing abstraction hierarchies for planning," in Proc. AAAI. San Mateo, CA, 1994, pp. 692-697.
    • (1994) Proc. AAAI , pp. 692-697
    • Knoblock, C.1    Tenenberg, J.2    Yang, Q.3
  • 14
    • 33749896164 scopus 로고
    • Learning by watching: Extracting reusable task knowledge from visual observation of human performance
    • Y. Kuniyoshi, M. Inaba, and H. Inoue, "Learning by watching: Extracting reusable task knowledge from visual observation of human performance," IEEE Trans. Robot. Automat., 1991.
    • (1991) IEEE Trans. Robot. Automat.
    • Kuniyoshi, Y.1    Inaba, M.2    Inoue, H.3
  • 16
    • 0026880130 scopus 로고
    • Automatic programming of behavior-based robot with reinforcement learning
    • S. Mahadevan and J. Connell, "Automatic programming of behavior-based robot with reinforcement learning," Artif. Intell., vol. 55, pp. 311-365, 1992.
    • (1992) Artif. Intell. , vol.55 , pp. 311-365
    • Mahadevan, S.1    Connell, J.2
  • 17
    • 0002242826 scopus 로고    scopus 로고
    • Learning to use selective attention and short-term memory in sequential tasks
    • Cambridge, MA
    • A. McCallum, "Learning to use selective attention and short-term memory in sequential tasks," in Proc. Conf. Simulation of Adaptive Behavior. Cambridge, MA, 1996, pp. 315-324.
    • (1996) Proc. Conf. Simulation of Adaptive Behavior , pp. 315-324
    • McCallum, A.1
  • 18
    • 0003932121 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Computer Science, University of Rochester, Rochester, NY
    • _, "Reinforcement Learning with Selective Perception and Hidden State," Ph.D. dissertation, Dept. Computer Science, University of Rochester, Rochester, NY, 1996.
    • (1996) Reinforcement Learning with Selective Perception and Hidden State
  • 19
    • 0019909899 scopus 로고
    • A survey of partially observable Markov decision processes: Theory, models, and algorithms
    • G. Monohan, "A survey of partially observable Markov decision processes: Theory, models, and algorithms," Manage. Sci., vol. 28, no. 1, pp. 1-16, 1982.
    • (1982) Manage. Sci. , vol.28 , Issue.1 , pp. 1-16
    • Monohan, G.1
  • 20
    • 0029514510 scopus 로고
    • The parti-game algorithm for variable resolution reinforcement learning in multidimensional state spaces
    • A. Moore and C. Atkeson, "The parti-game algorithm for variable resolution reinforcement learning in multidimensional state spaces," Mach. Learn., 1994.
    • (1994) Mach. Learn.
    • Moore, A.1    Atkeson, C.2
  • 21
    • 0002044093 scopus 로고    scopus 로고
    • Identifying hierarchical structure in sequences: A linear-time algorithm
    • C. Nevill-Manning and I. Witten, "Identifying hierarchical structure in sequences: A linear-time algorithm," J. Artif. Intell. Res., vol. 7, pp. 67-82, 1997.
    • (1997) J. Artif. Intell. Res. , vol.7 , pp. 67-82
    • Nevill-Manning, C.1    Witten, I.2
  • 22
    • 85168129602 scopus 로고
    • Approximating optimal policies for partially observable stochastic domains
    • San Mateo, CA
    • R. Parr and S. Russell, "Approximating optimal policies for partially observable stochastic domains," in Proc. IJCAI'95. San Mateo, CA, 1995, pp. 1088-1094.
    • (1995) Proc. IJCAI'95 , pp. 1088-1094
    • Parr, R.1    Russell, S.2
  • 23
    • 84898956770 scopus 로고    scopus 로고
    • Reinforcement learning with hierarchies of machines
    • Cambridge, MA: MIT Press
    • _, "Reinforcement learning with hierarchies of machines," in Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems 9
  • 25
    • 33749929402 scopus 로고    scopus 로고
    • Plan should abstractly describe intended behavior
    • Durham, NC
    • K. Pfleger and B. Hayes-Roth, "Plan should abstractly describe intended behavior," in Proc. JCIS, vol. 1. Durham, NC, 1997, pp. 29-33.
    • (1997) Proc. JCIS , vol.1 , pp. 29-33
    • Pfleger, K.1    Hayes-Roth, B.2
  • 27
    • 10844252596 scopus 로고
    • Incremental development of complex behaviors through automatic construction of sensory-motor hierarchies
    • San Francisco, CA
    • M. Ring, "Incremental development of complex behaviors through automatic construction of sensory-motor hierarchies," in Proc. ICML. San Francisco, CA, 1991, pp. 343-347.
    • (1991) Proc. ICML , pp. 343-347
    • Ring, M.1
  • 28
    • 33749981374 scopus 로고    scopus 로고
    • Evolution-based discovery of hierarchical behavior
    • Cambridge, MA
    • J. Rosca and D. Ballard, "Evolution-based discovery of hierarchical behavior," in Proc. AAAI. Cambridge, MA, 1996.
    • (1996) Proc. AAAI
    • Rosca, J.1    Ballard, D.2
  • 30
    • 0016069798 scopus 로고
    • Planning in a hierarchy of abstraction spaces
    • E. Sacerdoti, "Planning in a hierarchy of abstraction spaces," Artif. Intell., vol. 5, pp. 115-135, 1974.
    • (1974) Artif. Intell. , vol.5 , pp. 115-135
    • Sacerdoti, E.1
  • 31
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • J. Schmidhuber, "Learning complex, extended sequences using the principle of history compression," Neural Computation, vol. 4, no. 2, pp. 234-242, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 32
    • 0348068168 scopus 로고
    • Learning unambiguous reduced sequence descriptions
    • _, "Learning unambiguous reduced sequence descriptions," in Advances in Neural Information Processing Systems, 1993, pp. 291-298.
    • (1993) Advances in Neural Information Processing Systems , pp. 291-298
  • 34
    • 85153965130 scopus 로고
    • Reinforcement learning with soft state aggregation
    • S. J. Hanson, J. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann
    • S. Singh, T. Jaakkola, and M. Jordan, "Reinforcement learning with soft state aggregation," in Advances in Neural Information Processing Systems 7, S. J. Hanson, J. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1994.
    • (1994) Advances in Neural Information Processing Systems 7
    • Singh, S.1    Jaakkola, T.2    Jordan, M.3
  • 35
    • 0017943242 scopus 로고
    • The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs
    • E. Sondik, "The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs," Oper. Res., vol. 26, no. 2, 1978.
    • (1978) Oper. Res. , vol.26 , Issue.2
    • Sondik, E.1
  • 36
    • 0032772352 scopus 로고    scopus 로고
    • Multi-agent reinforcement learning: Weighting and partitioning
    • R. Sun and T. Peterson, "Multi-agent reinforcement learning: Weighting and partitioning," Neural Networks, vol. 12, no. 4-5, pp. 127-153, 1999.
    • (1999) Neural Networks , vol.12 , Issue.4-5 , pp. 127-153
    • Sun, R.1    Peterson, T.2
  • 37
    • 33749939390 scopus 로고    scopus 로고
    • Learning plans without a priori knowledge
    • IEEE Press, Piscataway, NJ
    • R. Sun and C. Sessions, Learning plans without a priori knowledge, in Proc. WCCI-IJCNN'98, IEEE Press, Piscataway, NJ, vol. 1, no. 1-6, 1998.
    • (1998) Proc. WCCI-IJCNN'98 , vol.1 , Issue.1-6
    • Sun, R.1    Sessions, C.2
  • 38
    • 84922015064 scopus 로고
    • TD Models: Modeling the world at a mixture of time scales
    • San Francisco, CA
    • R. Sutton, "TD Models: Modeling the world at a mixture of time scales," in Proc. ICML. San Francisco, CA, 1995.
    • (1995) Proc. ICML
    • Sutton, R.1
  • 39
    • 0038145105 scopus 로고    scopus 로고
    • Hierarchical explanation-based reinforcement learning
    • San Francisco, CA
    • P. Tadepalli and T. Dietterich, "Hierarchical explanation-based reinforcement learning," in Proc. Int. Conf. Machine Learning. San Francisco, CA, 1997, pp. 358-366.
    • (1997) Proc. Int. Conf. Machine Learning , pp. 358-366
    • Tadepalli, P.1    Dietterich, T.2
  • 40
    • 0029390263 scopus 로고
    • Reinforcement learning of multiple tasks using a hierarchical CMAC architecture
    • C. Tham, "Reinforcement learning of multiple tasks using a hierarchical CMAC architecture," Robotics and Autonomous Systems, vol. 15, pp. 247-274, 1995.
    • (1995) Robotics and Autonomous Systems , vol.15 , pp. 247-274
    • Tham, C.1
  • 41
  • 42
    • 0004049895 scopus 로고
    • Ph.D. dissertation, Cambridge Univ., Cambridge, U.K.
    • C. Watkins, "Learning with Delayed Rewards," Ph.D. dissertation, Cambridge Univ., Cambridge, U.K., 1989.
    • (1989) Learning with Delayed Rewards
    • Watkins, C.1
  • 43
    • 0029232079 scopus 로고
    • Distributed reinforcement learning
    • G. Weiss, "Distributed reinforcement learning," Robotics and Autonomous Systems, vol. 15, no. 1-2, pp. 135-142, 1995.
    • (1995) Robotics and Autonomous Systems , vol.15 , Issue.1-2 , pp. 135-142
    • Weiss, G.1
  • 44
    • 0029250080 scopus 로고
    • Reinforcement learning of non-Markov decision processes
    • S. Whitehead and L. Lin, "Reinforcement learning of non-Markov decision processes," Artif. Intell., vol. 73, no. 1-2, pp. 271-306, 1995.
    • (1995) Artif. Intell. , vol.73 , Issue.1-2 , pp. 271-306
    • Whitehead, S.1    Lin, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.