메뉴 건너뛰기




Volumn 23, Issue 3, 2000, Pages 349-356

Adaptive integration in elasto-plastic boundary element analysis

Author keywords

Addaptive integration; Boundary element method; Elasto plasticity

Indexed keywords

ADAPTIVE ALGORITHMS; ELASTOPLASTICITY; INTEGRATION;

EID: 0033704012     PISSN: 02533839     EISSN: 21587299     Source Type: Journal    
DOI: 10.1080/02533839.2000.9670555     Document Type: Article
Times cited : (50)

References (13)
  • 1
    • 0021664069 scopus 로고
    • Advanced integration schemes over boundary elements and volume cells for two- and three-dimensional non-linear analysis
    • London: Elsevier
    • Mustoe, G.G.W., 1984. “Advanced integration schemes over boundary elements and volume cells for two- and three-dimensional non-linear analysis,”. In Developments in Boundary Element Methods, London:Elsevier.
    • (1984) Developments in Boundary Element Methods
    • Mustoe, G.G.W.1
  • 2
    • 0016871823 scopus 로고
    • Effective numerical treatment of boundary integral equation
    • Lachat, J.C., and Watson, J.O., 1976. “Effective numerical treatment of boundary integral equation,”. Int. J. Num. Meth. Engng, 10:991–1005.
    • (1976) Int. J. Num. Meth. Engng , vol.10 , pp. 991-1005
    • Lachat, J.C.1    Watson, J.O.2
  • 3
    • 0029531711 scopus 로고
    • Effective evaluation of non-singular integrals in 3D BEM
    • Davies, T.G., and Bu, S., 1995. “Effective evaluation of non-singular integrals in 3D BEM,”. Advances in Engng. Software, 23:121–128.
    • (1995) Advances in Engng. Software , vol.23 , pp. 121-128
    • Davies, T.G.1    Bu, S.2
  • 4
    • 0027681565 scopus 로고
    • Efficient evaluation of volume integrals in boundary element method
    • Dallner, R., and Kuhn, G., 1993. “Efficient evaluation of volume integrals in boundary element method,”. Comp. Methods in Appl. Mech. and Engng., 109:95–109.
    • (1993) Comp. Methods in Appl. Mech. and Engng. , vol.109 , pp. 95-109
    • Dallner, R.1    Kuhn, G.2
  • 5
    • 0003003453 scopus 로고    scopus 로고
    • Accurate evaluations of strongly singular domain integrals in non-linear BEM
    • Brebbia C.A., (ed), Southampton: Computational Mechanics Publication
    • Gao, X.W., and Davies, T.G., 1998. “Accurate evaluations of strongly singular domain integrals in non-linear BEM,”. In Boundary Elements XX, Edited by:Brebbia, C.A., 85–94. Southampton:Computational Mechanics Publication.
    • (1998) Boundary Elements XX , pp. 85-94
    • Gao, X.W.1    Davies, T.G.2
  • 7
    • 0021727912 scopus 로고
    • Advanced implementation of the boundary element methods for three-dimensional problems of elasto-plasticity
    • London: Elsevier
    • Banerjee, P.K., and Davies, T.G., 1984. “Advanced implementation of the boundary element methods for three-dimensional problems of elasto-plasticity.”. In Developments in Boundary Element Methods, London:Elsevier.
    • (1984) Developments in Boundary Element Methods
    • Banerjee, P.K.1    Davies, T.G.2
  • 8
    • 0030270728 scopus 로고    scopus 로고
    • Non-singular Somigliana stress identities in elasticity
    • Cruse, T.A., and Richardson, J.D., 1996. “Non-singular Somigliana stress identities in elasticity.”. Int. J. Num. Meth. Engng., 39:3273–3304.
    • (1996) Int. J. Num. Meth. Engng. , vol.39 , pp. 3273-3304
    • Cruse, T.A.1    Richardson, J.D.2
  • 9
    • 0001548771 scopus 로고
    • A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method
    • Guiggiani, M., and Gigante, A., 1990. A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. J. Appl. Mech., 57:906–915.
    • (1990) J. Appl. Mech. , vol.57 , pp. 906-915
    • Guiggiani, M.1    Gigante, A.2
  • 10
    • 85023960505 scopus 로고    scopus 로고
    • An effective boundary element algorithm for 2D and 3D elastoplastic problems
    • Gao, X.W., and Davies, T.G., in press. An effective boundary element algorithm for 2D and 3D elastoplastic problems.”. Int. J. Solids and Structures
    • Int. J. Solids and Structures
    • Gao, X.W.1    Davies, T.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.