메뉴 건너뛰기




Volumn 11, Issue 1, 2000, Pages 249-253

How to improve fuzzy-neural system modeling by means of qualitative simulation

Author keywords

Fuzzy systems; Identification; Neural networks; Qualitative simulation

Indexed keywords

COMPUTER SIMULATION; CONTROL SYSTEM SYNTHESIS; FUZZY SETS; KNOWLEDGE BASED SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS;

EID: 0033640722     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.822528     Document Type: Article
Times cited : (11)

References (12)
  • 1
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm
    • S. Horikawa, T. Furuhashi, and Y. Uchikawa, "On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm," IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 801-814, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 801-814
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 2
    • 0027601884 scopus 로고
    • Anfis: Adaptive network-based fuzzy inference system
    • J. Jang, "Anfis: Adaptive network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665-685, 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , pp. 665-685
    • Jang, J.1
  • 3
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp. 116-132, 1985.
    • (1985) IEEE Trans. Syst., Man, Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 5
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Y. Lin and G. A. Cunningham, "A new approach to fuzzy-neural system modeling," IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 190-198, 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.1    Cunningham, G.A.2
  • 6
    • 0032141636 scopus 로고    scopus 로고
    • Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control
    • S. Barada and H. Singh, "Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control," IEEE Trans. Syst., Man, Cybern., vol. 28, no. 3, pp. 371-391, 1998.
    • (1998) IEEE Trans. Syst., Man, Cybern. , vol.28 , Issue.3 , pp. 371-391
    • Barada, S.1    Singh, H.2
  • 7
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • L. X. Wang and J. M. Mendel, "Generating fuzzy rules by learning from examples," IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1414-1427, 1992.
    • (1992) IEEE Trans. Syst., Man, Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 9
    • 0025490985 scopus 로고
    • Networks for approximating and learning
    • T. Poggio and F. Girosi, "Networks for approximating and learning," in Proc. IEEE, vol. 78, 1990, pp. 1481-1497.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 10
    • 0032168021 scopus 로고    scopus 로고
    • Qualitative models and fuzzy systems: An integrated approach for learning from data
    • R. Bellazzi, L. Ironi, R. Guglielmann, and M. Stefanelli, "Qualitative models and fuzzy systems: An integrated approach for learning from data," Artificial Intell. Medicine, vol. 14, pp. 5-28, 1998.
    • (1998) Artificial Intell. Medicine , vol.14 , pp. 5-28
    • Bellazzi, R.1    Ironi, L.2    Guglielmann, R.3    Stefanelli, M.4
  • 11
    • 0026521199 scopus 로고
    • A physiological model of glucose-insulin interaction in type 1 diabetes mellitus
    • E. D. Lehmann and T. Deutsch, "A physiological model of glucose-insulin interaction in type 1 diabetes mellitus," Biomed. Eng., vol. 14, pp. 235-242, 1992.
    • (1992) Biomed. Eng. , vol.14 , pp. 235-242
    • Lehmann, E.D.1    Deutsch, T.2
  • 12
    • 20144366610 scopus 로고    scopus 로고
    • A qualitative-fuzzy framework for nonlinear black-box system identification
    • T. Dean, Ed.. San Mateo, CA
    • R. Bellazzi, R. Guglielmann, and L. Ironi, "A qualitative-fuzzy framework for nonlinear black-box system identification," in Proc. 16th Int. Joint Conf. Artificial Intell. (IJCAI 99), T. Dean, Ed.. San Mateo, CA, 1999, pp. 1041-1046.
    • (1999) Proc. 16th Int. Joint Conf. Artificial Intell. (IJCAI 99) , pp. 1041-1046
    • Bellazzi, R.1    Guglielmann, R.2    Ironi, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.