-
3
-
-
17744416393
-
-
M. H. Acuña et al., ibid. 284, 790 (1999).
-
(1999)
Science
, vol.284
, pp. 790
-
-
Acuña, M.H.1
-
4
-
-
0010576241
-
-
M. H. Acuña et al., ibid. 279, 1676 (1998).
-
(1998)
Science
, vol.279
, pp. 1676
-
-
Acuña, M.H.1
-
5
-
-
0020410620
-
-
R. A. Langel, J. D. Phillips, R. J. Horner, Geophys. Res. Lett. 9, 269 (1982); R. A. Langel, C. C. Schnetzler, J. D. Phillips, R. J. Horner, ibid., p. 273. Note that satellites are placed in circular orbit about Earth at altitudes in excess of about 350 km to prevent rapid orbit decay due to atmospheric drag. Terrestrial magnetic mapping is thus confined to altitudes below about 25 km and above 350 km. A magnetic survey (by balloon) over the Kursk anomaly at 9- and 25-km altitudes measured peak-to-peak amplitudes of 3000 and 1500 nT, respectively. See Y. P. Tsvetkov, N. M. Rotanova, V. N. Oraevsky, S.D. Odintsov, J. Geomagn. Geoelectr. 49, 689 (1997).
-
(1982)
Geophys. Res. Lett.
, vol.9
, pp. 269
-
-
Langel, R.A.1
Phillips, J.D.2
Horner, R.J.3
-
6
-
-
0020410620
-
-
R. A. Langel, J. D. Phillips, R. J. Horner, Geophys. Res. Lett. 9, 269 (1982); R. A. Langel, C. C. Schnetzler, J. D. Phillips, R. J. Horner, ibid., p. 273. Note that satellites are placed in circular orbit about Earth at altitudes in excess of about 350 km to prevent rapid orbit decay due to atmospheric drag. Terrestrial magnetic mapping is thus confined to altitudes below about 25 km and above 350 km. A magnetic survey (by balloon) over the Kursk anomaly at 9- and 25-km altitudes measured peak-to-peak amplitudes of 3000 and 1500 nT, respectively. See Y. P. Tsvetkov, N. M. Rotanova, V. N. Oraevsky, S.D. Odintsov, J. Geomagn. Geoelectr. 49, 689 (1997).
-
Geophys. Res. Lett.
, pp. 273
-
-
Langel, R.A.1
Schnetzler, C.C.2
Phillips, J.D.3
Horner, R.J.4
-
7
-
-
0031463719
-
-
R. A. Langel, J. D. Phillips, R. J. Horner, Geophys. Res. Lett. 9, 269 (1982); R. A. Langel, C. C. Schnetzler, J. D. Phillips, R. J. Horner, ibid., p. 273. Note that satellites are placed in circular orbit about Earth at altitudes in excess of about 350 km to prevent rapid orbit decay due to atmospheric drag. Terrestrial magnetic mapping is thus confined to altitudes below about 25 km and above 350 km. A magnetic survey (by balloon) over the Kursk anomaly at 9- and 25-km altitudes measured peak-to-peak amplitudes of 3000 and 1500 nT, respectively. See Y. P. Tsvetkov, N. M. Rotanova, V. N. Oraevsky, S.D. Odintsov, J. Geomagn. Geoelectr. 49, 689 (1997).
-
(1997)
J. Geomagn. Geoelectr.
, vol.49
, pp. 689
-
-
Tsvetkov, Y.P.1
Rotanova, N.M.2
Oraevsky, V.N.3
Odintsov, S.D.4
-
10
-
-
0345570333
-
-
note
-
The magnetic field external to a uniformly magnetized plate of infinite extent is zero, so one may, by superposition of such a plate, construct additional models that fit the observations equally well. For this reason, the direction of magnetization is less well constrained than the change in direction, or magnetization contrast, along x̂.
-
-
-
-
12
-
-
0020374117
-
-
We compare Mars' crustal magnetization with an equivalent layer magnetization model of terrestrial continental crust derived from satellite observations. See, for example, M. A. Mayhew and S. C. Galliher, Geophys. Res. Lett. 9, 311 (1982).
-
(1982)
Geophys. Res. Lett.
, vol.9
, pp. 311
-
-
Mayhew, M.A.1
Galliher, S.C.2
-
13
-
-
0021043305
-
-
D. A. Clark, Bull. Aust. Soc. Explor. Geophys. 14, 49 (1983). Magnetite has traditionally been the favorite candidate for terrestrial magnetic anomalies, because of its much greater magnetic susceptibility compared with other magnetic minerals. This view reflects the prevailing assumption that induced magnetization dominates remanent magnetization in terrestrial magnetic anomalies. However, if terrestrial crustal magnetism is attributed to remanent magnetism, multidomain hematite or pyrrhotite mineralogies would also be favored over multidomain magnetite, characterized by relatively weak TRM, for Earth's crustal magnetism.
-
(1983)
Bull. Aust. Soc. Explor. Geophys.
, vol.14
, pp. 49
-
-
Clark, D.A.1
-
15
-
-
0030707623
-
-
R. Rieder et al., Science 278, 1771 (1997).
-
(1997)
Science
, vol.278
, pp. 1771
-
-
Rieder, R.1
-
20
-
-
0344276275
-
-
J. H. Shirley and R. W. Fairbridge, Eds. Chapman & Hall, London
-
G. Schubert, Encyclopedia of Planetary Sciences, J. H. Shirley and R. W. Fairbridge, Eds. (Chapman & Hall, London, 1997), p. 416.
-
(1997)
Encyclopedia of Planetary Sciences
, pp. 416
-
-
Schubert, G.1
-
21
-
-
0344276274
-
-
note
-
The term "sea floor spreading," as used here, refers to the genesis of new crust at a spreading center, or along a ridge axis, by plate tectonics and is not intended to imply the existence of a sea or ocean on Mars. On Earth, spreading centers are found in oceans, an association that is reflected in the terminology. Water is thought to play a central role in plate tectonics, however, because of its importance in melting, heat transfer, and mechanical properties.
-
-
-
-
24
-
-
37049043381
-
-
J. T, Wilson, Nature 207, 343 (1965); Science 150, 482 (1965).
-
(1965)
Nature
, vol.207
, pp. 343
-
-
Wilson, J.T.1
-
25
-
-
0344708290
-
-
J. T, Wilson, Nature 207, 343 (1965); Science 150, 482 (1965).
-
(1965)
Science
, vol.150
, pp. 482
-
-
-
26
-
-
0002266237
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson, AZ
-
W. B. Banerdt, M. P. Golombek, K. Tanaka, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, AZ, 1992), pp. 249-297.
-
(1992)
Mars
, pp. 249-297
-
-
Banerdt, W.B.1
Golombek, M.P.2
Tanaka, K.3
-
27
-
-
0002835628
-
-
H H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson, AZ
-
R. O. Pepin and M. H. Carr, in Mars, H H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, AZ, 1992), pp. 120-143.
-
(1992)
Mars
, pp. 120-143
-
-
Pepin, R.O.1
Carr, M.H.2
-
28
-
-
0004192303
-
-
G. Schubert, S. C. Solomon, D. L. Turcotte, M. J. Drake, N. H. Sleep, in ibid., pp. 147-183.
-
Mars
, pp. 147-183
-
-
Schubert, G.1
Solomon, S.C.2
Turcotte, D.L.3
Drake, M.J.4
Sleep, N.H.5
-
29
-
-
0003927472
-
-
Cambridge Univ. Press, Cambridge
-
2, where r is the distance to the source along the line perpendicular to the source joining source and observer. See, for example, R. J. Blakely [Potential Theory in Gravity and Magnetic Applications (Cambridge Univ. Press, Cambridge, 1995)].
-
(1995)
Potential Theory in Gravity and Magnetic Applications
-
-
Blakely, R.J.1
-
30
-
-
0345138800
-
-
note
-
We thank the many Mars Global Surveyor Project personnel, Goddard Space Flight Center engineering and technical staff, and our colleagues at the University of California at Berkeley and the Centre d'Etude Spatiale des Rayonnements, Toulouse, France, who have contributed to the success of the Magnetometer and Electron Reflectometer Investigation. We thank M. Kaelberer, D. Brain, F. Perin, and P. Lawton for their participation in data analysis and display and C. Ladd for graphics and presentation support. We also acknowledge helpful reviews and comments by M. Purucker, J. Heirtzler, G. Kletetschka, T. Ravat, and others. G. Kletetschka and M. Purucker are acknowledged for extensive discussions regarding magnetic mineralogy. The research at Berkeley was supported by NASA grant NAG-5-959. N.F.N. acknowledges support in part by NASA grant NAG-5-3538.
-
-
-
|