메뉴 건너뛰기




Volumn 30, Issue 2, 1999, Pages 169-184

PRESS model selection in repeated measures data

Author keywords

Correlated errors; Cross validation; Linear mixed effects model; Pivoting; Predicted residual sum of squares

Indexed keywords

DATA PROCESSING; MODELING;

EID: 0033611824     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-9473(98)00088-7     Document Type: Article
Times cited : (21)

References (29)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, pp. 267-281.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0002386245 scopus 로고
    • The prediction sum of squares as a criterion for selecting predictor variables
    • University of Kentucky
    • Allen, D.M., 1971. The prediction sum of squares as a criterion for selecting predictor variables. University of Kentucky, Department of Statistics Technical Report # 23.
    • (1971) Department of Statistics Technical Report # 23
    • Allen, D.M.1
  • 3
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • Allen D.M. The relationship between variable selection and data augmentation and a method for prediction. Technometrics. 16:1974;125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 4
    • 0003565214 scopus 로고
    • BMDP Statistical Software Inc., University of California Press, Berkeley
    • BMDP Statistical Software Manual, 1992. BMDP Statistical Software Inc., University of California Press, Berkeley.
    • (1992) BMDP Statistical Software Manual
  • 7
    • 0001176385 scopus 로고
    • The best subset in multiple regression analysis
    • Garside M.J. The best subset in multiple regression analysis. J. Roy. Statist. Soc. C. 14:1965;196-200.
    • (1965) J. Roy. Statist. Soc. C , vol.14 , pp. 196-200
    • Garside, M.J.1
  • 8
    • 0024892712 scopus 로고
    • Modeling the covariance structure of repeated measurements
    • Geary D.N. Modeling the covariance structure of repeated measurements. Biometrics. 45:1989;1183-1195.
    • (1989) Biometrics , vol.45 , pp. 1183-1195
    • Geary, D.N.1
  • 9
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • Geisser S. The predictive sample reuse method with applications. J. Amer. Statist. Assoc. 70:1975;320-328.
    • (1975) J. Amer. Statist. Assoc. , vol.70 , pp. 320-328
    • Geisser, S.1
  • 10
    • 0001526195 scopus 로고
    • A predictive approach to model selection
    • Geisser S., Eddy W.F. A predictive approach to model selection. J. Amer. Statist. Assoc. 74:1979;153-160.
    • (1979) J. Amer. Statist. Assoc. , vol.74 , pp. 153-160
    • Geisser, S.1    Eddy, W.F.2
  • 11
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and related problems
    • Harville D.A. Maximum likelihood approaches to variance component estimation and related problems. J. Amer. Statist. Assoc. 72:1977;320-340.
    • (1977) J. Amer. Statist. Assoc. , vol.72 , pp. 320-340
    • Harville, D.A.1
  • 12
    • 0001278496 scopus 로고
    • Criteria for selection of a subset regression: Which one should be used?
    • Hocking, R.R., 1972. Criteria for selection of a subset regression: which one should be used? Technometrics 14, 967-970.
    • (1972) Technometrics , vol.14 , pp. 967-970
    • Hocking, R.R.1
  • 13
    • 0022966316 scopus 로고
    • Unbalanced repeated-measures models with structured covariance matrices
    • Jennrich R.I., Schluchter M.D. Unbalanced repeated-measures models with structured covariance matrices. Biometrics. 42:1986;805-820.
    • (1986) Biometrics , vol.42 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2
  • 15
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird N.M., Ware J.H. Random-effects models for longitudinal data. Biometrics. 38:1982;963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 17
    • 0030083038 scopus 로고    scopus 로고
    • Prediction in repeated measures models with engineering applications
    • Lisski P.L., Nummi T. Prediction in repeated measures models with engineering applications. Technometrics. 38:1996;25-36.
    • (1996) Technometrics , vol.38 , pp. 25-36
    • Lisski, P.L.1    Nummi, T.2
  • 19
    • 0025583442 scopus 로고
    • SUPPORT: Study to understand prognoses and preferences for outcomes and risks of treatment study design
    • (Eds.)
    • Murphy, D.J., Cluff, L.E. (Eds.), 1990. SUPPORT: Study to understand prognoses and preferences for outcomes and risks of treatment study design. J. Clin. Epidemiol. 43(s).
    • (1990) J. Clin. Epidemiol. , vol.43 , Issue.S
    • Murphy, D.J.1    Cluff, L.E.2
  • 20
    • 0002648792 scopus 로고    scopus 로고
    • The Schwarz criterion and related methods for normal linear models
    • Pauler D.K. The Schwarz criterion and related methods for normal linear models. Biometrika. 85:1998;13-27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.K.1
  • 21
    • 0001597980 scopus 로고
    • Estimating the mean and covariance structure nonparametrically when the data are curves
    • Rice J.A., Silverman B.W. Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B. 53:1991;233-243.
    • (1991) J. Roy. Statist. Soc. Ser. B , vol.53 , pp. 233-243
    • Rice, J.A.1    Silverman, B.W.2
  • 22
    • 0345175634 scopus 로고
    • SAS / IML Software, SAS Institution Inc., Cary, North Carolina
    • SAS / IML Software, 1990. Usage and Reference. Version 6, SAS Institution Inc., Cary, North Carolina.
    • (1990) Usage and Reference. Version 6
  • 23
    • 0003995378 scopus 로고
    • Version 6, second Ed. SAS Institute Inc., Cary, North Carolina
    • SAS Guide to Macro Processing, 1990. Version 6, second Ed. SAS Institute Inc., Cary, North Carolina.
    • (1990) SAS Guide to Macro Processing
  • 24
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 6:1978;461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 25
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • Shao J. Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88:1993;486-494.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 26
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B. 36:1974;111-147.
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 27
    • 0029887528 scopus 로고    scopus 로고
    • Goodness of fit in generalized non-linear mixed-effects models
    • Vonesh E.F., Chinchilli V.M., Pu K. Goodness of fit in generalized non-linear mixed-effects models. Biometrics. 52:1996;572-587.
    • (1996) Biometrics , vol.52 , pp. 572-587
    • Vonesh, E.F.1    Chinchilli, V.M.2    Pu, K.3
  • 28
    • 0026565429 scopus 로고
    • Residual plots for repeated measures
    • Weiss R.E., Lazaro C.G. Residual plots for repeated measures. Statist. Med. 11:1992;115-124.
    • (1992) Statist. Med. , vol.11 , pp. 115-124
    • Weiss, R.E.1    Lazaro, C.G.2
  • 29
    • 79960824743 scopus 로고
    • Covariance structure selection in general mixed models
    • Wolfinger R. Covariance structure selection in general mixed models. Commun. Statist. Simulation Comput. 22:1993;1079-1106.
    • (1993) Commun. Statist. Simulation Comput. , vol.22 , pp. 1079-1106
    • Wolfinger, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.