-
1
-
-
0010558523
-
Some minimax invariant procedures of estimating a cumulative distribution function
-
Aggarwal O.P. Some minimax invariant procedures of estimating a cumulative distribution function. Ann. Math. Statist. 26:1955;450-462.
-
(1955)
Ann. Math. Statist.
, vol.26
, pp. 450-462
-
-
Aggarwal, O.P.1
-
2
-
-
77956891548
-
A note on the estimation of a distribution function and quantiles by a kernel method
-
Azzalini A. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika. 68:1981;326-328.
-
(1981)
Biometrika
, vol.68
, pp. 326-328
-
-
Azzalini, A.1
-
3
-
-
0000404653
-
Approximating densities by exponential families
-
Barron A.R., Sheu C.H. Approximating densities by exponential families. Ann. Statist. 19(3):1991;1347-1369.
-
(1991)
Ann. Statist.
, vol.19
, Issue.3
, pp. 1347-1369
-
-
Barron, A.R.1
Sheu, C.H.2
-
4
-
-
0040235492
-
Consistent cross-validated density estimation
-
Chow Y.S., Geman S., Wu I.-D. Consistent cross-validated density estimation. Ann. Statist. 11:1983;25-38.
-
(1983)
Ann. Statist.
, vol.11
, pp. 25-38
-
-
Chow, Y.S.1
Geman, S.2
Wu, I.-D.3
-
6
-
-
0242495602
-
The islamic mean: A peculiar L-statistic
-
Akadémiai Kiadó, Budapest
-
Dehling, H.G., Kalma, J.N., Moes, C, Schaafsma, W., 1991. The islamic mean: a peculiar L-statistic. Studia Scientiarum Mathematicarum Hungarica, vol. 26. Akadémiai Kiadó, Budapest, pp. 297-308.
-
(1991)
Studia Scientiarum Mathematicarum Hungarica
, vol.26
, pp. 297-308
-
-
Dehling, H.G.1
Kalma, J.N.2
Moes, C.3
Schaafsma, W.4
-
8
-
-
0005995491
-
No empirical probability measure can converge in the total variation sense for all distributions
-
Devroye L., Gyorfi L. No empirical probability measure can converge in the total variation sense for all distributions. Ann. Statist. 18(3):1990;1496-1499.
-
(1990)
Ann. Statist.
, vol.18
, Issue.3
, pp. 1496-1499
-
-
Devroye, L.1
Gyorfi, L.2
-
10
-
-
0001120413
-
A Bayesian analysis of some nonparametric problems
-
Ferguson T. A Bayesian analysis of some nonparametric problems. Ann. Statist. 1(2):1973;209-230.
-
(1973)
Ann. Statist.
, vol.1
, Issue.2
, pp. 209-230
-
-
Ferguson, T.1
-
11
-
-
0000418028
-
On Kullback-Leibler loss and density estimation
-
Hall P. On Kullback-Leibler loss and density estimation. Ann. Statist. 15(4):1987;1491-1519.
-
(1987)
Ann. Statist.
, vol.15
, Issue.4
, pp. 1491-1519
-
-
Hall, P.1
-
12
-
-
0344616101
-
-
IMSL, 1987. Stat / Library, Houston
-
IMSL, 1987. Stat / Library, Houston.
-
-
-
-
13
-
-
0002264319
-
Estimating densities, quantiles, quantile densities and density quantiles
-
Jones M.C. Estimating densities, quantiles, quantile densities and density quantiles. Ann. Inst. Statist. Math. 44:1992;721-727.
-
(1992)
Ann. Inst. Statist. Math.
, vol.44
, pp. 721-727
-
-
Jones, M.C.1
-
14
-
-
0002584853
-
An asymptotically efficient solution to the bandwidth problem of kernel density estimation
-
Marron J.S. An asymptotically efficient solution to the bandwidth problem of kernel density estimation. Ann. Statist. 13(3):1985;1011-1023.
-
(1985)
Ann. Statist.
, vol.13
, Issue.3
, pp. 1011-1023
-
-
Marron, J.S.1
-
16
-
-
0001529784
-
Remarks on some nonparametric estimates of a density function
-
Rosenblatt M. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27:1956;832-837.
-
(1956)
Ann. Math. Statist.
, vol.27
, pp. 832-837
-
-
Rosenblatt, M.1
-
20
-
-
0002484499
-
A Bernstein polynomial approach to density function estimation
-
Proc. of Summer Res. Inst. on Statistical Inference for Stochastic Processes, Bloomington
-
Vitale, R.A., 1975. A Bernstein polynomial approach to density function estimation. Stoch Proc. and Related Topics, Proc. of Summer Res. Inst. on Statistical Inference for Stochastic Processes, Bloomington, pp. 87-100.
-
(1975)
Stoch Proc. and Related Topics
, pp. 87-100
-
-
Vitale, R.A.1
|