-
1
-
-
0006577961
-
-
Creighton, A. M.; Turner, S., Eds.; Chemical Society: London
-
(a) Marshall, G. R. In Chemical Recognition in Biological Systems; Creighton, A. M.; Turner, S., Eds.; Chemical Society: London, 1982; p 278.
-
(1982)
Chemical Recognition in Biological Systems
, pp. 278
-
-
Marshall, G.R.1
-
4
-
-
0031032830
-
-
(d) Sasaki, N. A.; Dockner, M.; Chiaroni, A.; Riche, C.; Potier, P. J. Org. Chem. 1997, 62, 765.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 765
-
-
Sasaki, N.A.1
Dockner, M.2
Chiaroni, A.3
Riche, C.4
Potier, P.5
-
5
-
-
0030738499
-
-
(a) Baures, P. W.; Ojala, W. H.; Gleason, W. B.; Johnson, R. L. J. Pept. Res. 1997, 50, 1.
-
(1997)
J. Pept. Res.
, vol.50
, pp. 1
-
-
Baures, P.W.1
Ojala, W.H.2
Gleason, W.B.3
Johnson, R.L.4
-
6
-
-
0026100376
-
-
(b) Holladay, M. W.; Lin, C. W.; May, C. S.; Garvey, D. S.; Witte, D. G.; Miller, T. R.; Wolfram, C. A. W.; Nadzan, A. M. J. Med. Chem. 1991, 34, 455.
-
(1991)
J. Med. Chem.
, vol.34
, pp. 455
-
-
Holladay, M.W.1
Lin, C.W.2
May, C.S.3
Garvey, D.S.4
Witte, D.G.5
Miller, T.R.6
Wolfram, C.A.W.7
Nadzan, A.M.8
-
7
-
-
0025005699
-
-
(c) Samanen, J.; Zuber, G.; Bean, J.; Eggleston, D.; Romoff, T.; Kopple, K.; Saunders: M.; Regoli, D. Int. J. Pept. Protein Res. 1990, 35, 501.
-
(1990)
Int. J. Pept. Protein Res.
, vol.35
, pp. 501
-
-
Samanen, J.1
Zuber, G.2
Bean, J.3
Eggleston, D.4
Romoff, T.5
Kopple, K.6
Saunders, M.7
Regoli, D.8
-
9
-
-
0000617719
-
-
Beausoleil, E.; Sharma, R.; Michnick, S. W.; Lubell, W. D. J. Org. Chem. 1998, 63, 6572.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 6572
-
-
Beausoleil, E.1
Sharma, R.2
Michnick, S.W.3
Lubell, W.D.4
-
10
-
-
0030605059
-
-
For a review on the use of 4-hydroxyproline in synthesis see: Remuzon, P. Tetrahedron 1996, 52, 13803.
-
(1996)
Tetrahedron
, vol.52
, pp. 13803
-
-
Remuzon, P.1
-
15
-
-
0030590505
-
-
A closely related approach has been used for the synthesis of kainic acid analogues: (a) Baldwin, J. E.; Fryer, A. M.; Spyvee, M. R.; Whitehead, R. C.; Wood, M. E. Tetrahedron Lett. 1996, 37, 6923. (b) Baldwin, J. E.; Bamford, S. J.; Fryer, A. M.; Wood, M. E. Tetrahedron Lett. 1995, 36, 4869. (c) Baldwin, J. E.; Rudolph, M. Tetrahedron Lett. 1994, 35, 6163. (d) Gill, P.; Lubell, W. D. J. Org. Chem. 1995, 60, 2658.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 6923
-
-
Baldwin, J.E.1
Fryer, A.M.2
Spyvee, M.R.3
Whitehead, R.C.4
Wood, M.E.5
-
16
-
-
85047673541
-
-
A closely related approach has been used for the synthesis of kainic acid analogues: (a) Baldwin, J. E.; Fryer, A. M.; Spyvee, M. R.; Whitehead, R. C.; Wood, M. E. Tetrahedron Lett. 1996, 37, 6923. (b) Baldwin, J. E.; Bamford, S. J.; Fryer, A. M.; Wood, M. E. Tetrahedron Lett. 1995, 36, 4869. (c) Baldwin, J. E.; Rudolph, M. Tetrahedron Lett. 1994, 35, 6163. (d) Gill, P.; Lubell, W. D. J. Org. Chem. 1995, 60, 2658.
-
(1995)
Tetrahedron Lett.
, vol.36
, pp. 4869
-
-
Baldwin, J.E.1
Bamford, S.J.2
Fryer, A.M.3
Wood, M.E.4
-
17
-
-
0028086438
-
-
A closely related approach has been used for the synthesis of kainic acid analogues: (a) Baldwin, J. E.; Fryer, A. M.; Spyvee, M. R.; Whitehead, R. C.; Wood, M. E. Tetrahedron Lett. 1996, 37, 6923. (b) Baldwin, J. E.; Bamford, S. J.; Fryer, A. M.; Wood, M. E. Tetrahedron Lett. 1995, 36, 4869. (c) Baldwin, J. E.; Rudolph, M. Tetrahedron Lett. 1994, 35, 6163. (d) Gill, P.; Lubell, W. D. J. Org. Chem. 1995, 60, 2658.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 6163
-
-
Baldwin, J.E.1
Rudolph, M.2
-
18
-
-
0029020561
-
-
A closely related approach has been used for the synthesis of kainic acid analogues: (a) Baldwin, J. E.; Fryer, A. M.; Spyvee, M. R.; Whitehead, R. C.; Wood, M. E. Tetrahedron Lett. 1996, 37, 6923. (b) Baldwin, J. E.; Bamford, S. J.; Fryer, A. M.; Wood, M. E. Tetrahedron Lett. 1995, 36, 4869. (c) Baldwin, J. E.; Rudolph, M. Tetrahedron Lett. 1994, 35, 6163. (d) Gill, P.; Lubell, W. D. J. Org. Chem. 1995, 60, 2658.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 2658
-
-
Gill, P.1
Lubell, W.D.2
-
19
-
-
0344836868
-
-
1H NMR spectra (500 MHz) of the crude reaction mixtures. Doping experiments using known amounts of various substituted proline methyl esters showed that the limit of detection was ≤2%
-
1H NMR spectra (500 MHz) of the crude reaction mixtures. Doping experiments using known amounts of various substituted proline methyl esters showed that the limit of detection was ≤2%.
-
-
-
-
20
-
-
0000584420
-
-
Morrison, J. D., Ed.; Academic Press: New York
-
Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol 3, pp 111-212.
-
(1984)
Asymmetric Synthesis
, vol.3
, pp. 111-212
-
-
Heathcock, C.H.1
-
21
-
-
0000037209
-
-
Mauger, A. B.; Irreverre, F.; Witkop, B. J. Am. Chem. Soc. 1966, 88, 2019.
-
(1966)
J. Am. Chem. Soc.
, vol.88
, pp. 2019
-
-
Mauger, A.B.1
Irreverre, F.2
Witkop, B.3
-
22
-
-
0344836871
-
-
For an explanation of the origin of the stereoselectivity in the reduction of the C-4 carbonyl group in 4-oxoprolines, see ref 6
-
For an explanation of the origin of the stereoselectivity in the reduction of the C-4 carbonyl group in 4-oxoprolines, see ref 6.
-
-
-
-
24
-
-
0000621291
-
-
Cyclopentanone enolates have been shown to give high threo selectivity in their reactions with aldehydes and ketones: (a) Fellman, P.; Dubois, J.-E. Tetrahedron 1978, 34, 1349. (b) Dubois, J. E.; Dubois, M. J. Chem. Soc. Chem. Commun. 1968, 1567.
-
(1978)
Tetrahedron
, vol.34
, pp. 1349
-
-
Fellman, P.1
Dubois, J.-E.2
-
25
-
-
37049135746
-
-
Cyclopentanone enolates have been shown to give high threo selectivity in their reactions with aldehydes and ketones: (a) Fellman, P.; Dubois, J.-E. Tetrahedron 1978, 34, 1349. (b) Dubois, J. E.; Dubois, M. J. Chem. Soc. Chem. Commun. 1968, 1567.
-
(1968)
J. Chem. Soc. Chem. Commun.
, pp. 1567
-
-
Dubois, J.E.1
Dubois, M.2
-
26
-
-
0000922736
-
-
Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, and references therein
-
(a) Braun, M. In Stereoselective Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, 1996; Vol. 3, pp 1603-1607, and references therein.
-
(1996)
Stereoselective Synthesis
, vol.3
, pp. 1603-1607
-
-
Braun, M.1
-
28
-
-
0000923060
-
-
(c) Noyori, R.; Nishida, I.; Sakata, J. J. Am. Chem. Soc. 1983, 105, 1598.
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 1598
-
-
Noyori, R.1
Nishida, I.2
Sakata, J.3
-
29
-
-
0347195435
-
-
(d) Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066.
-
(1980)
J. Org. Chem.
, vol.45
, pp. 1066
-
-
Heathcock, C.H.1
Buse, C.T.2
Kleschick, W.A.3
Pirrung, M.C.4
Sohn, J.E.5
Lampe, J.6
-
30
-
-
0345268234
-
-
It is known that steric hindrance on the enolate favors the erythro/threo equilibration, probably due to the release of strain in the aldolate; see refs 10 and 15a
-
It is known that steric hindrance on the enolate favors the erythro/threo equilibration, probably due to the release of strain in the aldolate; see refs 10 and 15a.
-
-
-
-
31
-
-
0001570202
-
-
Posner, G. H.; Lentz, C. M. J. Am, Chem. Soc. 1979, 101, 934.
-
(1979)
J. Am, Chem. Soc.
, vol.101
, pp. 934
-
-
Posner, G.H.1
Lentz, C.M.2
-
32
-
-
0344836869
-
-
note
-
Stereochemical assignment of 10d: The diastereotopic hydrogens attached to C-3 in ketone 2 appeared at δ 2.28 (dd, J = 17.9, 3.1 Hz) and 2.45 ppm (dd, J = 17.9, 8.5 Hz). The signal at lower field was assigned to the pro-S H-3 since its irradiation caused enhancement of H-2 (δ 3.76 ppm) and the other H-3 signal, while irradiation of the signal at δ 2.28 ppm (pro-R H-3) caused enhancement of only the other H-3 proton, H-2 being unaffected. In the deuterated ketone 10d, the signal at δ 2.45 ppm is not present and H-2 has a coupling constant of 2.9 Hz, typical of a trans arrangement, with the residual H-3 hydrogen (δ 2.20 ppm, bs).
-
-
-
|