-
5
-
-
0038813260
-
-
(e) Vögtle, F.; Dünnwald, T.; Schmidt, T. Acc. Chem. Res. 1996, 29, 451-460.
-
(1996)
Acc. Chem. Res.
, vol.29
, pp. 451-460
-
-
Vögtle, F.1
Dünnwald, T.2
Schmidt, T.3
-
6
-
-
0002871221
-
-
(f) Hamilton, D. G.; Sanders, J. K. M.; Davies, J. E.; Clegg, W.; Teat, S. J. Chem. Commun. 1997, 897-898. DNA catenanes [Seeman, N. C. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 225-248] provide an exception to the kinetically controlled strategies.
-
(1997)
Chem. Commun.
, pp. 897-898
-
-
Hamilton, D.G.1
Sanders, J.K.M.2
Davies, J.E.3
Clegg, W.4
Teat, S.J.5
-
7
-
-
0031804028
-
-
provide an exception to the kinetically controlled strategies
-
(f) Hamilton, D. G.; Sanders, J. K. M.; Davies, J. E.; Clegg, W.; Teat, S. J. Chem. Commun. 1997, 897-898. DNA catenanes [Seeman, N. C. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 225-248] provide an exception to the kinetically controlled strategies.
-
(1998)
Annu. Rev. Biophys. Biomol. Struct.
, vol.27
, pp. 225-248
-
-
Seeman, N.C.1
-
8
-
-
33748239927
-
-
Processes which utilize noncovalent forces to assemble an interlocked complex that is subsequently "captured" by irreversible covalent bond formation ("self-assembly with covalent modification") only operate under thermodynamic control before the final cyclization step [Amabilino, D. B.; Ashton, P. R.; Pérez-García, L.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1995, 34, 2378-2380]. "Strict self-assembly" pathways spontaneously and reversibly convert components into products at thermodynamic equilibrium [Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196].
-
(1995)
Angew. Chem., Int. Ed. Engl.
, vol.34
, pp. 2378-2380
-
-
Amabilino, D.B.1
Ashton, P.R.2
Pérez-García, L.3
Stoddart, J.F.4
-
9
-
-
0029811409
-
-
Processes which utilize noncovalent forces to assemble an interlocked complex that is subsequently "captured" by irreversible covalent bond formation ("self-assembly with covalent modification") only operate under thermodynamic control before the final cyclization step [Amabilino, D. B.; Ashton, P. R.; Pérez-García, L.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1995, 34, 2378-2380]. "Strict self-assembly" pathways spontaneously and reversibly convert components into products at thermodynamic equilibrium [Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196].
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.35
, pp. 1154-1196
-
-
Philp, D.1
Stoddart, J.F.2
-
10
-
-
0000949793
-
-
(a) Gruter, G.-J. M.; de Kanter, F. J. J.; Markies, P. R.; Nomoto, T.; Akkerman, O. S.; Bickelhaupt, F. J. Am. Chem. Soc. 1993, 115, 12179-12180.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 12179-12180
-
-
Gruter, G.-J.M.1
De Kanter, F.J.J.2
Markies, P.R.3
Nomoto, T.4
Akkerman, O.S.5
Bickelhaupt, F.6
-
11
-
-
0028117362
-
-
(b) Fujita, M.; Ibukuro, F.; Hagihara, H.; Ogura, K. Nature 1994, 367, 720-723.
-
(1994)
Nature
, vol.367
, pp. 720-723
-
-
Fujita, M.1
Ibukuro, F.2
Hagihara, H.3
Ogura, K.4
-
12
-
-
0000483730
-
-
(c) Fujita, M.; Ibukuro, F.; Yamaguchi, K.; Ogura, K. J. Am. Chem. Soc. 1995, 117, 4175-4176.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 4175-4176
-
-
Fujita, M.1
Ibukuro, F.2
Yamaguchi, K.3
Ogura, K.4
-
13
-
-
0000955402
-
-
(d) Fujita, M.; Ibukuro, F.; Seki, H.; Kamo, O.; Imanari, M.; Ogura, K. J. Am. Chem. Soc. 1996, 118, 899-900.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 899-900
-
-
Fujita, M.1
Ibukuro, F.2
Seki, H.3
Kamo, O.4
Imanari, M.5
Ogura, K.6
-
14
-
-
0032573870
-
-
(e) Fujita, M.; Aoyagi, M.; Ibukuro, F.; Ogura, K.; Yamaguchi, K. J. Am. Chem. Soc. 1998, 120, 611-612.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 611-612
-
-
Fujita, M.1
Aoyagi, M.2
Ibukuro, F.3
Ogura, K.4
Yamaguchi, K.5
-
15
-
-
0001609867
-
-
(f) Whang, D.; Park, K.-M.; Heo, J.; Ashton, P.; Kim, K. J. Am. Chem. Soc. 1998, 120, 4899-4900.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 4899-4900
-
-
Whang, D.1
Park, K.-M.2
Heo, J.3
Ashton, P.4
Kim, K.5
-
16
-
-
0002900071
-
-
(g) Try, A. C.; Harding, M. M.; Hamilton, D. G.; Sanders, J. K. M. Chem. Commun. 1998, 723-724.
-
(1998)
Chem. Commun.
, pp. 723-724
-
-
Try, A.C.1
Harding, M.M.2
Hamilton, D.G.3
Sanders, J.K.M.4
-
17
-
-
33746236970
-
-
(a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039-2041.
-
(1995)
Angew. Chem., Int. Ed. Engl.
, vol.34
, pp. 2039-2041
-
-
Schwab, P.1
France, M.B.2
Ziller, J.W.3
Grubbs, R.H.4
-
18
-
-
0030771019
-
-
(b) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2036-2056.
-
(1997)
Angew. Chem., Int. Ed. Engl.
, vol.36
, pp. 2036-2056
-
-
Schuster, M.1
Blechert, S.2
-
21
-
-
0029884246
-
-
For tandem RORCM reactions which covert one ring system into a different ring system see: Zuercher, W. J.; Hashimoto, M.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 6634-6640.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6634-6640
-
-
Zuercher, W.J.1
Hashimoto, M.2
Grubbs, R.H.3
-
22
-
-
0030738752
-
-
13,14 For the synthesis of a molecular knot by RCM see: Dietrich-Buchecker, C.; Rapenne, G.; Sauvage, J.-P. Chem. Commun. 1997, 2053-2054.
-
(1997)
Angew. Chem., Int. Ed. Engl.
, vol.36
, pp. 1308-1310
-
-
Mohr, B.1
Weck, M.2
Sauvage, J.-P.3
Grubbs, R.H.4
-
24
-
-
0000235321
-
-
For evidence of some catenane formation during RORCM of macrocycles without recognition sites see: Wolovsky, R. J. Am. Chem. Soc. 1970, 92, 2132-2133; Wasserman, E.; Ben-Efraim, D. A.; Wolovsky, R. J. Am. Chem. Soc. 1970, 92, 2133-2135. For a recent discussion of the mechanism involved in those reactions see: Gruter, G.-J. M.; Akkerman, O. S.; Bickelhaupt, F. Tetrahedron 1996, 52, 2565-2572.
-
(1970)
J. Am. Chem. Soc.
, vol.92
, pp. 2132-2133
-
-
Wolovsky, R.1
-
25
-
-
0007754590
-
-
For evidence of some catenane formation during RORCM of macrocycles without recognition sites see: Wolovsky, R. J. Am. Chem. Soc. 1970, 92, 2132-2133; Wasserman, E.; Ben-Efraim, D. A.; Wolovsky, R. J. Am. Chem. Soc. 1970, 92, 2133-2135. For a recent discussion of the mechanism involved in those reactions see: Gruter, G.-J. M.; Akkerman, O. S.; Bickelhaupt, F. Tetrahedron 1996, 52, 2565-2572.
-
(1970)
J. Am. Chem. Soc.
, vol.92
, pp. 2133-2135
-
-
Wasserman, E.1
Ben-Efraim, D.A.2
Wolovsky, R.3
-
26
-
-
0030049241
-
-
For evidence of some catenane formation during RORCM of macrocycles without recognition sites see: Wolovsky, R. J. Am. Chem. Soc. 1970, 92, 2132-2133; Wasserman, E.; Ben-Efraim, D. A.; Wolovsky, R. J. Am. Chem. Soc. 1970, 92, 2133-2135. For a recent discussion of the mechanism involved in those reactions see: Gruter, G.-J. M.; Akkerman, O. S.; Bickelhaupt, F. Tetrahedron 1996, 52, 2565-2572.
-
(1996)
Tetrahedron
, vol.52
, pp. 2565-2572
-
-
Gruter, G.-J.M.1
Akkerman, O.S.2
Bickelhaupt, F.3
-
27
-
-
0344886734
-
-
note
-
The metathesis "catalyst" is actually a precatalyst or reaction initiator, so a small amount of macrocycle/catenane is lost through cross metathesis with the benzylidene ligand of 5.
-
-
-
-
28
-
-
0344454945
-
-
note
-
2Cl/iPrOH) allowed the separation of individual catenane diolefin isomers EE-4 and EZ-3.
-
-
-
-
29
-
-
0344886732
-
-
note
-
2 can be problematical and therefore the RORCM reactions require rigorous degassing before and during the experiment.
-
-
-
-
30
-
-
33748216037
-
-
Leigh, D. A.; Moody, K.; Smart, J. P.; Watson, K. J.; Slawin, A. M. Z. Angew. Chem., Int. Ed. Engl. 1996, 35, 306-310.
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.35
, pp. 306-310
-
-
Leigh, D.A.1
Moody, K.2
Smart, J.P.3
Watson, K.J.4
Slawin, A.M.Z.5
-
32
-
-
0002543296
-
-
Note Added in Proof. For a recent example involving the temporary blocking of a cyclophane cavity in another catenane synthesis employing RCM see: Hamilton, D. G.; Sanders, J. K. M. Chem. Commun. 1998, 1749-1750.
-
(1998)
Chem. Commun.
, pp. 1749-1750
-
-
Hamilton, D.G.1
Sanders, J.K.M.2
-
33
-
-
0001532090
-
-
although solubility-limited concentrations and slow reaction kinetics [see footnote 10] make the system only quasi-reversible thus far and consequently the product distribution is not under strict thermodynamic control
-
Note Added in Proof. A π-electron rich/π-electron poor heterocircuit catenane synthesis by RORCM has recently been reported [Hamilton, D. G.; Feeder, N.; Teat, S. J.; Sanders, J. K. M. New J. Chem. 1998, 1019-1021], although solubility-limited concentrations and slow reaction kinetics [see footnote 10] make the system only quasi-reversible thus far and consequently the product distribution is not under strict thermodynamic control.
-
(1998)
New J. Chem.
, pp. 1019-1021
-
-
Hamilton, D.G.1
Feeder, N.2
Teat, S.J.3
Sanders, J.K.M.4
|