-
3
-
-
84988122273
-
-
(b) Venanzi, C. A.; Canzius, P. M.; Zhang, Z.; Bunce, J. D. J. Comput. Chem. 1989, 10, 1038.
-
(1989)
J. Comput. Chem.
, vol.10
, pp. 1038
-
-
Venanzi, C.A.1
Canzius, P.M.2
Zhang, Z.3
Bunce, J.D.4
-
5
-
-
0001179951
-
-
(d) Van Eijck, B. P.; Kroon-Batenburg, L. M. J; Kroon, J. J. Mol. Struct. 1990, 273, 315.
-
(1990)
J. Mol. Struct.
, vol.273
, pp. 315
-
-
Van Eijck, B.P.1
Kroon-Batenburg, L.M.J.2
Kroon, J.3
-
6
-
-
0026016274
-
-
(e) Ha, S; Gao, J.; Tidor, B.; Brady, J. W; Karplus, M. J. Am. Chem. Soc. 1991, 113, 1553.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 1553
-
-
Ha, S.1
Gao, J.2
Tidor, B.3
Brady, J.W.4
Karplus, M.5
-
10
-
-
84986522941
-
-
(i) Glennon, T. M.; Zheng, Y.-J.; Le Grand, S. M.; Shutzberg, B. A.; Merz, K. M. J. Comput. Chem. 1994, 15, 1019.
-
(1994)
J. Comput. Chem.
, vol.15
, pp. 1019
-
-
Glennon, T.M.1
Zheng, Y.-J.2
Le Grand, S.M.3
Shutzberg, B.A.4
Merz, K.M.5
-
11
-
-
0029837632
-
-
(j) Jebber, K. A.; Zhang, K; Cassady, C. J.; Chung-Phillips, A. J. Am. Chem. Soc. 1996, 118, 10515.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 10515
-
-
Jebber, K.A.1
Zhang, K.2
Cassady, C.J.3
Chung-Phillips, A.4
-
12
-
-
0029920179
-
-
(k) Uggla, R.; Sundberg, M. R.; Nevalainen, V. Tetrahedron 1996, 7, 1741.
-
(1996)
Tetrahedron
, vol.7
, pp. 1741
-
-
Uggla, R.1
Sundberg, M.R.2
Nevalainen, V.3
-
13
-
-
0343380162
-
-
(l) Francl, M. M.; Carey, C.; Chirlian, L. E.; Gange, D. M. J. Comput. Chem. 1996, 17, 367.
-
(1996)
J. Comput. Chem.
, vol.17
, pp. 367
-
-
Francl, M.M.1
Carey, C.2
Chirlian, L.E.3
Gange, D.M.4
-
14
-
-
0008230048
-
-
(m) Durier, V; Tristram, F.; Vergoten, G. J. Mol. Struct. (THEOCHEM) 1997, 395-396, 81.
-
(1997)
J. Mol. Struct. (THEOCHEM)
, vol.395-396
, pp. 81
-
-
Durier, V.1
Tristram, F.2
Vergoten, G.3
-
15
-
-
0039972317
-
-
(n) Klewinghaus, P.; van Eijck, B. P; Kouwijzer, L. C. E.; Kroon, J. J. Mol. Struct. (THEOCHEM) 1997, 395-396, 289.
-
(1997)
J. Mol. Struct. (THEOCHEM)
, vol.395-396
, pp. 289
-
-
Klewinghaus, P.1
Van Eijck, B.P.2
Kouwijzer, L.C.E.3
Kroon, J.4
-
21
-
-
0344747092
-
-
(f) Novaro, O.; Les, A.; Galvan, M.; Del Conde, G. Theor. Chim. Acta 1983, 64, 65.
-
(1983)
Theor. Chim. Acta
, vol.64
, pp. 65
-
-
Novaro, O.1
Les, A.2
Galvan, M.3
Del Conde, G.4
-
22
-
-
0009635738
-
-
(g) Yamabe, T.; Yamashita, K.; Kaminoyama, M.; Koizumi, M.; Tachibana, A.; Fukui, K. J. Phys. Chem. 1984, 88, 1459.
-
(1984)
J. Phys. Chem.
, vol.88
, pp. 1459
-
-
Yamabe, T.1
Yamashita, K.2
Kaminoyama, M.3
Koizumi, M.4
Tachibana, A.5
Fukui, K.6
-
23
-
-
0010761051
-
-
(h) Scheiner, S.; Redfern, P.; Szczesniak, M. M. J. Phys. Chem. 1985, 89, 262.
-
(1985)
J. Phys. Chem.
, vol.89
, pp. 262
-
-
Scheiner, S.1
Redfern, P.2
Szczesniak, M.M.3
-
27
-
-
0001582056
-
-
(l) Roszak, S.; Kaldor, U.; Chapman, D. A.; Kaufman, J. J. J. Phys. Chem. 1992, 96, 2123.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 2123
-
-
Roszak, S.1
Kaldor, U.2
Chapman, D.A.3
Kaufman, J.J.4
-
28
-
-
3342886687
-
-
(m) Chipot, C.; Gorb, L. G.; Rivail, J.-L. J. Phys. Chem. 1994, 98, 1601.
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 1601
-
-
Chipot, C.1
Gorb, L.G.2
Rivail, J.-L.3
-
31
-
-
27844520307
-
-
(p) Zhang, Q.; Bell, R.; Truong, T. N. J. Phys. Chem. 1995, 99, 592.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 592
-
-
Zhang, Q.1
Bell, R.2
Truong, T.N.3
-
33
-
-
0039694529
-
-
(r) Sargent, A. L.; Rollog, M. E.; Almlof, J. E.; Gassman, P. G.; Gerlt, J. A. J. Mol. Struct. (THEOCHEM) 1996, 388, 145.
-
(1996)
J. Mol. Struct. (THEOCHEM)
, vol.388
, pp. 145
-
-
Sargent, A.L.1
Rollog, M.E.2
Almlof, J.E.3
Gassman, P.G.4
Gerlt, J.A.5
-
35
-
-
0030092256
-
-
(t) Ho, L. L.; Mackerell, A. D.; Bash, P. A. J. Phys. Chem. 1996, 100, 4466.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 4466
-
-
Ho, L.L.1
Mackerell, A.D.2
Bash, P.A.3
-
37
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Gaussian 94, Revision D.4; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.: Ayala, P. Y.: Chen, W.: Wong, M. W.: Andres, J. L.: Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Pittsburgh, PA, 1995.
-
(1995)
Gaussian 94, Revision D.4
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
41
-
-
1542687299
-
-
In our previous study, a correlation between proton affinities (PAs) and angles of intramolecular hydrogen bonds in bifunctional organic compounds was examined. As the angle increases, PA values grow large. A protonated 2,4-pentadione has the angle 141.9°, which corresponds to a small PA value, 207.8 kcal/mol. A protonated 2,5-hexanedione has the angle 160.4°, which corresponds to a large PA value, 213.2 kcal/mol. Yamabe, S.; Hirao, K.; Wasada, H. J. Phys. Chem. 1992, 96, 10261.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 10261
-
-
Yamabe, S.1
Hirao, K.2
Wasada, H.3
-
42
-
-
0344747091
-
-
note
-
2O species, the following geometry has been obtained. equation presented The above structure is by 0.2 kcal/mol more stable than that in Figure 2. The energy difference is very small, which indicates that inter- and intramolecular hydrogen bonds are formed and cleaved instantaneously under the thermal condition.
-
-
-
-
43
-
-
0345609353
-
-
note
-
Participations of water trimer (n = 3) and tetramer (n = 4) were tested by means of PM3 calculations. The n = 3 precursor geometry of PM3 was found to be similar to that of B3-LYP(SCRF)/6-31G* in Figure 4. The PM3 calculation is, at least, applicable to precursor geometries. The n = 4 geometry involves four hydrogen bonds, and their linearities become worse than those in n = 3. Thus, the n = 4 geometry is unfavorable, and the water tetramer would not cause the mutarotation. equation presented
-
-
-
|