메뉴 건너뛰기




Volumn 156, Issue 2, 1999, Pages 407-426

The role played by space dimension in elliptic critical problems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033543051     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.1998.3589     Document Type: Article
Times cited : (236)

References (15)
  • 1
    • 0009191369 scopus 로고
    • Critical exponents and multiple critical dimensions for polyharmonic operators
    • F. Bernis and H.-Ch. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators, J. Differential Equations 117 (1995), 469-486.
    • (1995) J. Differential Equations , vol.117 , pp. 469-486
    • Bernis, F.1    Grunau, H.-Ch.2
  • 2
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical exponents
    • H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
    • (1983) Comm. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brezis, H.1    Nirenberg, L.2
  • 4
    • 0000454829 scopus 로고
    • Critical exponents, critical dimensions and the biharmonic operator
    • D. E. Edmunds, D. Fortunato, and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), 269-289.
    • (1990) Arch. Rational Mech. Anal. , vol.112 , pp. 269-289
    • Edmunds, D.E.1    Fortunato, D.2    Jannelli, E.3
  • 5
    • 22044454196 scopus 로고    scopus 로고
    • Critical growth problems for polyharmonic operators
    • F. Gazzola, Critical growth problems for polyharmonic operators, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 251-263.
    • (1998) Proc. Roy. Soc. Edinburgh Sect. A , vol.128 , pp. 251-263
    • Gazzola, F.1
  • 6
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 7
    • 84946996421 scopus 로고
    • Existence and nonuniqueness for the p-laplacian: Nonlinear eigenvalues
    • J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the p-laplacian: Nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), 1389-1430.
    • (1987) Comm. Partial Differential Equations , vol.12 , pp. 1389-1430
    • Azorero, J.G.1    Alonso, I.P.2
  • 8
    • 0009110619 scopus 로고
    • Critical exponents and multiple critical dimensions for polyharmonic operators, II
    • H.-Ch. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators, II, Boll. Un. Mat. Ital. B (7) 9 (1995), 815-847.
    • (1995) Boll. Un. Mat. Ital. B , vol.9 , Issue.7 , pp. 815-847
    • Grunau, H.-Ch.1
  • 9
    • 0042299884 scopus 로고    scopus 로고
    • On a conjecture of P. Pucci and J. Serrin
    • H.-Ch. Grunau, On a conjecture of P. Pucci and J. Serrin, Analysis 16 (1996), 399-403.
    • (1996) Analysis , vol.16 , pp. 399-403
    • Grunau, H.-Ch.1
  • 13
    • 0000514956 scopus 로고
    • Eigenfunction of the equation δu + λf(u) = 0
    • S. Pohozaev, Eigenfunction of the equation δu + λf(u) = 0, Soviet Math. Dokl. 6 (1965), 1408-1411.
    • (1965) Soviet Math. Dokl. , vol.6 , pp. 1408-1411
    • Pohozaev, S.1
  • 14
    • 0001648137 scopus 로고
    • A general variational identity
    • P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703.
    • (1986) Indiana Univ. Math. J. , vol.35 , pp. 681-703
    • Pucci, P.1    Serrin, J.2
  • 15
    • 0002490825 scopus 로고
    • Critical exponents and critical dimensions for polyharmonic
    • P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. 69 (1990), 55-83.
    • (1990) J. Math. Pures Appl. , vol.69 , pp. 55-83
    • Pucci, P.1    Serrin, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.