메뉴 건너뛰기




Volumn 286, Issue 5438, 1999, Pages 291-295

Crystal structure of invasin: A bacterial integrin-binding protein

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; FIBRONECTIN; INVASIN;

EID: 0033536633     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.286.5438.291     Document Type: Article
Times cited : (243)

References (70)
  • 1
    • 0027817384 scopus 로고
    • J. C. Pepe and V. L. Miller, Infect. Agents Dis. 2, 236 (1993); A. Marra and R. R. Isberg, Infect. Immun. 65, 3412 (1997); I. B. Autenrieth and R. Firsching, J. Med. Microbiol. 44, 285 (1996).
    • (1993) Infect. Agents Dis. , vol.2 , pp. 236
    • Pepe, J.C.1    Miller, V.L.2
  • 2
    • 0030845121 scopus 로고    scopus 로고
    • J. C. Pepe and V. L. Miller, Infect. Agents Dis. 2, 236 (1993); A. Marra and R. R. Isberg, Infect. Immun. 65, 3412 (1997); I. B. Autenrieth and R. Firsching, J. Med. Microbiol. 44, 285 (1996).
    • (1997) Infect. Immun. , vol.65 , pp. 3412
    • Marra, A.1    Isberg, R.R.2
  • 3
    • 0029878467 scopus 로고    scopus 로고
    • J. C. Pepe and V. L. Miller, Infect. Agents Dis. 2, 236 (1993); A. Marra and R. R. Isberg, Infect. Immun. 65, 3412 (1997); I. B. Autenrieth and R. Firsching, J. Med. Microbiol. 44, 285 (1996).
    • (1996) J. Med. Microbiol. , vol.44 , pp. 285
    • Autenrieth, I.B.1    Firsching, R.2
  • 5
    • 0025250067 scopus 로고
    • R. R. Isberg and J. M. Leong, ibid. 60, 861 (1990); R. R. Isberg and G. Tran Van Nhieu, Trends Microbiol, 2, 10 (1994).
    • (1990) Cell , vol.60 , pp. 861
    • Isberg, R.R.1    Leong, J.M.2
  • 7
    • 0026770377 scopus 로고
    • R. O. Hynes, Cell 69, 11 (1992).
    • (1992) Cell , vol.69 , pp. 11
    • Hynes, R.O.1
  • 8
  • 9
    • 0027158079 scopus 로고
    • G. Tran Van Nhieu, E. S. Krukonis, A. A. Reszka, A. F. Horwitz, R. R. Isberg, J Biol. Chem. 271, 7665 (1996); G. Tran Van Nhieu and R. R. Isberg, EMBO J. 12, 1887 (1993). H. Liu, L. Magoun, J. M. Leong, Infect. Immun. 67, 2045 (1999); B. Kenny et al., Cell 91, 511 (1997).
    • (1993) EMBO J. , vol.12 , pp. 1887
    • Van Nhieu, G.T.1    Isberg, R.R.2
  • 10
    • 0032588291 scopus 로고    scopus 로고
    • G. Tran Van Nhieu, E. S. Krukonis, A. A. Reszka, A. F. Horwitz, R. R. Isberg, J Biol. Chem. 271, 7665 (1996); G. Tran Van Nhieu and R. R. Isberg, EMBO J. 12, 1887 (1993). H. Liu, L. Magoun, J. M. Leong, Infect. Immun. 67, 2045 (1999); B. Kenny et al., Cell 91, 511 (1997).
    • (1999) Infect. Immun. , vol.67 , pp. 2045
    • Liu, H.1    Magoun, L.2    Leong, J.M.3
  • 11
    • 0030701868 scopus 로고    scopus 로고
    • G. Tran Van Nhieu, E. S. Krukonis, A. A. Reszka, A. F. Horwitz, R. R. Isberg, J Biol. Chem. 271, 7665 (1996); G. Tran Van Nhieu and R. R. Isberg, EMBO J. 12, 1887 (1993). H. Liu, L. Magoun, J. M. Leong, Infect. Immun. 67, 2045 (1999); B. Kenny et al., Cell 91, 511 (1997).
    • (1997) Cell , vol.91 , pp. 511
    • Kenny, B.1
  • 12
    • 0025301659 scopus 로고
    • J. M. Leong, R. S. Foumier, R. R. Isberg, EMBO J. 9, 1979 (1990); M. J. Worley, I. Stojiljkovic, F. Heffron, Mol. Microbiol. 29, 1471 (1998). Using a neural network algorithm that predicts the membrane topology of integral outer membrane proteins [K. Diederichs, J. Freigang, S. Umhau, K. Zeth, J. Breed, Protein Sci. 7, 2413 (1998)], we predict that residues 142 to 494 contain 22 β strands. Thus, the structure of this portion of invasin may resemble those of the membrane-spanning portions of porins (16 to 18 β strands) [reviewed by B. K. Jap and P. J. Walian, Physiol. Rev. 76, 1073 (1996)] or FhuA (22 β strands) [K. P. Locher et al., Cell 95, 771 (1998); A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs, W. Weite, Science 282, 2215 (1998)].
    • (1990) EMBO J. , vol.9 , pp. 1979
    • Leong, J.M.1    Foumier, R.S.2    Isberg, R.R.3
  • 13
    • 0031718287 scopus 로고    scopus 로고
    • J. M. Leong, R. S. Foumier, R. R. Isberg, EMBO J. 9, 1979 (1990); M. J. Worley, I. Stojiljkovic, F. Heffron, Mol. Microbiol. 29, 1471 (1998). Using a neural network algorithm that predicts the membrane topology of integral outer membrane proteins [K. Diederichs, J. Freigang, S. Umhau, K. Zeth, J. Breed, Protein Sci. 7, 2413 (1998)], we predict that residues 142 to 494 contain 22 β strands. Thus, the structure of this portion of invasin may resemble those of the membrane-spanning portions of porins (16 to 18 β strands) [reviewed by B. K. Jap and P. J. Walian, Physiol. Rev. 76, 1073 (1996)] or FhuA (22 β strands) [K. P. Locher et al., Cell 95, 771 (1998); A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs, W. Weite, Science 282, 2215 (1998)].
    • (1998) Mol. Microbiol. , vol.29 , pp. 1471
    • Worley, M.J.1    Stojiljkovic, I.2    Heffron, F.3
  • 14
    • 0031791382 scopus 로고    scopus 로고
    • J. M. Leong, R. S. Foumier, R. R. Isberg, EMBO J. 9, 1979 (1990); M. J. Worley, I. Stojiljkovic, F. Heffron, Mol. Microbiol. 29, 1471 (1998). Using a neural network algorithm that predicts the membrane topology of integral outer membrane proteins [K. Diederichs, J. Freigang, S. Umhau, K. Zeth, J. Breed, Protein Sci. 7, 2413 (1998)], we predict that residues 142 to 494 contain 22 β strands. Thus, the structure of this portion of invasin may resemble those of the membrane-spanning portions of porins (16 to 18 β strands) [reviewed by B. K. Jap and P. J. Walian, Physiol. Rev. 76, 1073 (1996)] or FhuA (22 β strands) [K. P. Locher et al., Cell 95, 771 (1998); A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs, W. Weite, Science 282, 2215 (1998)].
    • (1998) Protein Sci. , vol.7 , pp. 2413
    • Diederichs, K.1    Freigang, J.2    Umhau, S.3    Zeth, K.4    Breed, J.5
  • 15
    • 0029907916 scopus 로고    scopus 로고
    • J. M. Leong, R. S. Foumier, R. R. Isberg, EMBO J. 9, 1979 (1990); M. J. Worley, I. Stojiljkovic, F. Heffron, Mol. Microbiol. 29, 1471 (1998). Using a neural network algorithm that predicts the membrane topology of integral outer membrane proteins [K. Diederichs, J. Freigang, S. Umhau, K. Zeth, J. Breed, Protein Sci. 7, 2413 (1998)], we predict that residues 142 to 494 contain 22 β strands. Thus, the structure of this portion of invasin may resemble those of the membrane-spanning portions of porins (16 to 18 β strands) [reviewed by B. K. Jap and P. J. Walian, Physiol. Rev. 76, 1073 (1996)] or FhuA (22 β strands) [K. P. Locher et al., Cell 95, 771 (1998); A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs, W. Weite, Science 282, 2215 (1998)].
    • (1996) Physiol. Rev. , vol.76 , pp. 1073
    • Jap, B.K.1    Walian, P.J.2
  • 16
    • 0032414254 scopus 로고    scopus 로고
    • J. M. Leong, R. S. Foumier, R. R. Isberg, EMBO J. 9, 1979 (1990); M. J. Worley, I. Stojiljkovic, F. Heffron, Mol. Microbiol. 29, 1471 (1998). Using a neural network algorithm that predicts the membrane topology of integral outer membrane proteins [K. Diederichs, J. Freigang, S. Umhau, K. Zeth, J. Breed, Protein Sci. 7, 2413 (1998)], we predict that residues 142 to 494 contain 22 β strands. Thus, the structure of this portion of invasin may resemble those of the membrane-spanning portions of porins (16 to 18 β strands) [reviewed by B. K. Jap and P. J. Walian, Physiol. Rev. 76, 1073 (1996)] or FhuA (22 β strands) [K. P. Locher et al., Cell 95, 771 (1998); A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs, W. Weite, Science 282, 2215 (1998)].
    • (1998) Cell , vol.95 , pp. 771
    • Locher, K.P.1
  • 17
    • 0032545324 scopus 로고    scopus 로고
    • J. M. Leong, R. S. Foumier, R. R. Isberg, EMBO J. 9, 1979 (1990); M. J. Worley, I. Stojiljkovic, F. Heffron, Mol. Microbiol. 29, 1471 (1998). Using a neural network algorithm that predicts the membrane topology of integral outer membrane proteins [K. Diederichs, J. Freigang, S. Umhau, K. Zeth, J. Breed, Protein Sci. 7, 2413 (1998)], we predict that residues 142 to 494 contain 22 β strands. Thus, the structure of this portion of invasin may resemble those of the membrane-spanning portions of porins (16 to 18 β strands) [reviewed by B. K. Jap and P. J. Walian, Physiol. Rev. 76, 1073 (1996)] or FhuA (22 β strands) [K. P. Locher et al., Cell 95, 771 (1998); A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs, W. Weite, Science 282, 2215 (1998)].
    • (1998) Science , vol.282 , pp. 2215
    • Ferguson, A.D.1    Hofmann, E.2    Coulton, J.W.3    Diederichs, K.4    Weite, W.5
  • 18
    • 0026500253 scopus 로고
    • J. Yu and J. B. Kaber, Mol. Microbiol. 6, 411 (1992). A sequence identity of 30% has been established as the threshold for guaranteed three-dimensional similarity [C. Chothia and A. M. Lesk, EMBO J. 5, 823 (1986) ]. Length-dependent sequence identity thresholds are discussed in work by R. A. Abagyan and S. Batalov, J. Mol. Biol. 273, 355 (1997), and references therein. By these criteria, the cell-binding regions of invasin and intimin do not share significant sequence identity, and individual invasin domains do not share significant sequence similarity with Fn-III, IgSF, CRD, CTLD, or CTLD-related proteins.
    • (1992) Mol. Microbiol. , vol.6 , pp. 411
    • Yu, J.1    Kaber, J.B.2
  • 19
    • 0022706389 scopus 로고
    • J. Yu and J. B. Kaber, Mol. Microbiol. 6, 411 (1992). A sequence identity of 30% has been established as the threshold for guaranteed three-dimensional similarity [C. Chothia and A. M. Lesk, EMBO J. 5, 823 (1986) ]. Length-dependent sequence identity thresholds are discussed in work by R. A. Abagyan and S. Batalov, J. Mol. Biol. 273, 355 (1997), and references therein. By these criteria, the cell-binding regions of invasin and intimin do not share significant sequence identity, and individual invasin domains do not share significant sequence similarity with Fn-III, IgSF, CRD, CTLD, or CTLD-related proteins.
    • (1986) EMBO J. , vol.5 , pp. 823
    • Chothia, C.1    Lesk, A.M.2
  • 20
    • 0031576355 scopus 로고    scopus 로고
    • references therein
    • J. Yu and J. B. Kaber, Mol. Microbiol. 6, 411 (1992). A sequence identity of 30% has been established as the threshold for guaranteed three-dimensional similarity [C. Chothia and A. M. Lesk, EMBO J. 5, 823 (1986) ]. Length-dependent sequence identity thresholds are discussed in work by R. A. Abagyan and S. Batalov, J. Mol. Biol. 273, 355 (1997), and references therein. By these criteria, the cell-binding regions of invasin and intimin do not share significant sequence identity, and individual invasin domains do not share significant sequence similarity with Fn-III, IgSF, CRD, CTLD, or CTLD-related proteins.
    • (1997) J. Mol. Biol. , vol.273 , pp. 355
    • Abagyan, R.A.1    Batalov, S.2
  • 21
    • 0028855422 scopus 로고
    • 495, five residues shorter than the predicted site of cleavage (R. R. Isberg, unpublished data). A selenomethionine (SeMet)-substituted version of Inv497 was produced following the method of W. A. Hendrickson, J. R. Horton, D. M. LeMaster, EMBO J. 9, 1665 (1990), and purified under the same conditions as the native protein. Amino acid composition analysis showed ∼100% replacement of the eight methionines by SeMet (M. S. Brown and R. R. Isberg, data not shown)
    • (1995) EMBO J. , vol.14 , pp. 422
    • Leong, J.M.1    Morrissey, P.E.2    Marra, A.3    Isberg, R.R.4
  • 22
    • 0344199298 scopus 로고    scopus 로고
    • unpublished data
    • 495, five residues shorter than the predicted site of cleavage (R. R. Isberg, unpublished data). A selenomethionine (SeMet)-substituted version of Inv497 was produced following the method of W. A. Hendrickson, J. R. Horton, D. M. LeMaster, EMBO J. 9, 1665 (1990), and purified under the same conditions as the native protein. Amino acid composition analysis showed ∼100% replacement of the eight methionines by SeMet (M. S. Brown and R. R. Isberg, data not shown)
    • Isberg, R.R.1
  • 23
    • 0025262173 scopus 로고
    • 495, five residues shorter than the predicted site of cleavage (R. R. Isberg, unpublished data). A selenomethionine (SeMet)-substituted version of Inv497 was produced following the method of W. A. Hendrickson, J. R. Horton, D. M. LeMaster, EMBO J. 9, 1665 (1990), and purified under the same conditions as the native protein. Amino acid composition analysis showed ∼100% replacement of the eight methionines by SeMet (M. S. Brown and R. R. Isberg, data not shown)
    • (1990) EMBO J. , vol.9 , pp. 1665
    • Hendrickson, W.A.1    Horton, J.R.2    LeMaster, D.M.3
  • 24
    • 0344199299 scopus 로고    scopus 로고
    • data not shown
    • 495, five residues shorter than the predicted site of cleavage (R. R. Isberg, unpublished data). A selenomethionine (SeMet)-substituted version of Inv497 was produced following the method of W. A. Hendrickson, J. R. Horton, D. M. LeMaster, EMBO J. 9, 1665 (1990), and purified under the same conditions as the native protein. Amino acid composition analysis showed ∼100% replacement of the eight methionines by SeMet (M. S. Brown and R. R. Isberg, data not shown)
    • Brown, M.S.1    Isberg, R.R.2
  • 25
    • 0026343041 scopus 로고
    • G. Tran Van Nhieu and R. R. Isberg, J. Biol. Chem. 266, 24367 (1991); E. S. Krukonis, P. Dersch, J. A. Eble, R. R. Isberg, ibid. 273, 31837 (1998); J. A. Eble et al., Biochemistry 37, 10945 (1998); Y. Takada, J. Ylanne, D. Mandelman, W. Puzon, M. H. Ginsberg, J. Cell Biol. 119, 913 (1992).
    • (1991) J. Biol. Chem. , vol.266 , pp. 24367
    • Tran Van Nhieu, G.1    Isberg, R.R.2
  • 26
    • 0033610810 scopus 로고    scopus 로고
    • G. Tran Van Nhieu and R. R. Isberg, J. Biol. Chem. 266, 24367 (1991); E. S. Krukonis, P. Dersch, J. A. Eble, R. R. Isberg, ibid. 273, 31837 (1998); J. A. Eble et al., Biochemistry 37, 10945 (1998); Y. Takada, J. Ylanne, D. Mandelman, W. Puzon, M. H. Ginsberg, J. Cell Biol. 119, 913 (1992).
    • (1998) J. Biol. Chem. , vol.273 , pp. 31837
    • Krukonis, E.S.1    Dersch, P.2    Eble, J.A.3    Isberg, R.R.4
  • 27
    • 0032483122 scopus 로고    scopus 로고
    • G. Tran Van Nhieu and R. R. Isberg, J. Biol. Chem. 266, 24367 (1991); E. S. Krukonis, P. Dersch, J. A. Eble, R. R. Isberg, ibid. 273, 31837 (1998); J. A. Eble et al., Biochemistry 37, 10945 (1998); Y. Takada, J. Ylanne, D. Mandelman, W. Puzon, M. H. Ginsberg, J. Cell Biol. 119, 913 (1992).
    • (1998) Biochemistry , vol.37 , pp. 10945
    • Eble, J.A.1
  • 28
    • 0026460174 scopus 로고
    • G. Tran Van Nhieu and R. R. Isberg, J. Biol. Chem. 266, 24367 (1991); E. S. Krukonis, P. Dersch, J. A. Eble, R. R. Isberg, ibid. 273, 31837 (1998); J. A. Eble et al., Biochemistry 37, 10945 (1998); Y. Takada, J. Ylanne, D. Mandelman, W. Puzon, M. H. Ginsberg, J. Cell Biol. 119, 913 (1992).
    • (1992) J. Cell Biol. , vol.119 , pp. 913
    • Takada, Y.1    Ylanne, J.2    Mandelman, D.3    Puzon, W.4    Ginsberg, M.H.5
  • 29
    • 0001031803 scopus 로고    scopus 로고
    • Phasing and model building: A cryocooled xenon derivative was prepared with the apparatus described by S. M. Soltis, M. H. B. Stowell, M. C. Wiener, G. N. Phillips, D. C. Rees, J. Appl. Crystallogr. 30, 190 (1997). Data were processed and scaled with the HKL package [Z. Otwinowski and W. Minor, Methods Enzymol. 276, 307 (1997)]. Heavy-atom refinement and phasing were performed with the program SHARP [E. De La Fortelle and G. Bricogne, Methods Enzymol. 276, 472 (1997)]. Difference Patterson maps for the xenon and di-μ-iodobis(ethylenediamine) diplatinum nitrate (PIP) derivatives were interpreted with XTALVIEW [D. E. McRee, Practical Protein Crystallography (Academic Press, San Diego, CA, 1993)], and one xenon, three platinum, and two iodine sites were refined with SHARP. An initial MIRAS electron density map was calculated to 3.6 Å and solvent flattened with Solomon [J. P. Abrahams and A. G. W. Leslie, Acta Crystallogr. D52, 30 (1996)] as implemented in SHARP. A skeleton of the map [G. J. Kleywegt and T. A. Jones, Acta Crystallogr. D52, 826 (1997)] served as a starting point for model building with the program O (22). The initial electron density map revealed the Ig-like domain structures of the first four domains, but a definitive assignment of side chains was not possible, and the connectivity in D5 was ambiguous. Using MIRAS phases, we found eight selenium sites in a difference Fourier map calculated for the SeMet derivative, which allowed identification of methionines that were used as markers for the assignment of the rest of the sequence. After including the SeMet sites in heavy-atom positional refinement using SHARP, we calculated an improved solvent-flattened MIRAS electron density map to 3.2 Å resolution with a mean figure of merit of 0.509.
    • (1997) J. Appl. Crystallogr. , vol.30 , pp. 190
    • Soltis, S.M.1    Stowell, M.H.B.2    Wiener, M.C.3    Phillips, G.N.4    Rees, D.C.5
  • 30
    • 0031059866 scopus 로고    scopus 로고
    • Phasing and model building: A cryocooled xenon derivative was prepared with the apparatus described by S. M. Soltis, M. H. B. Stowell, M. C. Wiener, G. N. Phillips, D. C. Rees, J. Appl. Crystallogr. 30, 190 (1997). Data were processed and scaled with the HKL package [Z. Otwinowski and W. Minor, Methods Enzymol. 276, 307 (1997)]. Heavy-atom refinement and phasing were performed with the program SHARP [E. De La Fortelle and G. Bricogne, Methods Enzymol. 276, 472 (1997)]. Difference Patterson maps for the xenon and di-μ-iodobis(ethylenediamine) diplatinum nitrate (PIP) derivatives were interpreted with XTALVIEW [D. E. McRee, Practical Protein Crystallography (Academic Press, San Diego, CA, 1993)], and one xenon, three platinum, and two iodine sites were refined with SHARP. An initial MIRAS electron density map was calculated to 3.6 Å and solvent flattened with Solomon [J. P. Abrahams and A. G. W. Leslie, Acta Crystallogr. D52, 30 (1996)] as implemented in SHARP. A skeleton of the map [G. J. Kleywegt and T. A. Jones, Acta Crystallogr. D52, 826 (1997)] served as a starting point for model building with the program O (22). The initial electron density map revealed the Ig-like domain structures of the first four domains, but a definitive assignment of side chains was not possible, and the connectivity in D5 was ambiguous. Using MIRAS phases, we found eight selenium sites in a difference Fourier map calculated for the SeMet derivative, which allowed identification of methionines that were used as markers for the assignment of the rest of the sequence. After including the SeMet sites in heavy-atom positional refinement using SHARP, we calculated an improved solvent-flattened MIRAS electron density map to 3.2 Å resolution with a mean figure of merit of 0.509.
    • (1997) Methods Enzymol. , vol.276 , pp. 307
    • Otwinowski, Z.1    Minor, W.2
  • 31
    • 0031058188 scopus 로고    scopus 로고
    • Phasing and model building: A cryocooled xenon derivative was prepared with the apparatus described by S. M. Soltis, M. H. B. Stowell, M. C. Wiener, G. N. Phillips, D. C. Rees, J. Appl. Crystallogr. 30, 190 (1997). Data were processed and scaled with the HKL package [Z. Otwinowski and W. Minor, Methods Enzymol. 276, 307 (1997)]. Heavy-atom refinement and phasing were performed with the program SHARP [E. De La Fortelle and G. Bricogne, Methods Enzymol. 276, 472 (1997)]. Difference Patterson maps for the xenon and di-μ-iodobis(ethylenediamine) diplatinum nitrate (PIP) derivatives were interpreted with XTALVIEW [D. E. McRee, Practical Protein Crystallography (Academic Press, San Diego, CA, 1993)], and one xenon, three platinum, and two iodine sites were refined with SHARP. An initial MIRAS electron density map was calculated to 3.6 Å and solvent flattened with Solomon [J. P. Abrahams and A. G. W. Leslie, Acta Crystallogr. D52, 30 (1996)] as implemented in SHARP. A skeleton of the map [G. J. Kleywegt and T. A. Jones, Acta Crystallogr. D52, 826 (1997)] served as a starting point for model building with the program O (22). The initial electron density map revealed the Ig-like domain structures of the first four domains, but a definitive assignment of side chains was not possible, and the connectivity in D5 was ambiguous. Using MIRAS phases, we found eight selenium sites in a difference Fourier map calculated for the SeMet derivative, which allowed identification of methionines that were used as markers for the assignment of the rest of the sequence. After including the SeMet sites in heavy-atom positional refinement using SHARP, we calculated an improved solvent-flattened MIRAS electron density map to 3.2 Å resolution with a mean figure of merit of 0.509.
    • (1997) Methods Enzymol. , vol.276 , pp. 472
    • De La Fortelle, E.1    Bricogne, G.2
  • 32
    • 0003549516 scopus 로고
    • Academic Press, San Diego, CA
    • Phasing and model building: A cryocooled xenon derivative was prepared with the apparatus described by S. M. Soltis, M. H. B. Stowell, M. C. Wiener, G. N. Phillips, D. C. Rees, J. Appl. Crystallogr. 30, 190 (1997). Data were processed and scaled with the HKL package [Z. Otwinowski and W. Minor, Methods Enzymol. 276, 307 (1997)]. Heavy-atom refinement and phasing were performed with the program SHARP [E. De La Fortelle and G. Bricogne, Methods Enzymol. 276, 472 (1997)]. Difference Patterson maps for the xenon and di-μ-iodobis(ethylenediamine) diplatinum nitrate (PIP) derivatives were interpreted with XTALVIEW [D. E. McRee, Practical Protein Crystallography (Academic Press, San Diego, CA, 1993)], and one xenon, three platinum, and two iodine sites were refined with SHARP. An initial MIRAS electron density map was calculated to 3.6 Å and solvent flattened with Solomon [J. P. Abrahams and A. G. W. Leslie, Acta Crystallogr. D52, 30 (1996)] as implemented in SHARP. A skeleton of the map [G. J. Kleywegt and T. A. Jones, Acta Crystallogr. D52, 826 (1997)] served as a starting point for model building with the program O (22). The initial electron density map revealed the Ig-like domain structures of the first four domains, but a definitive assignment of side chains was not possible, and the connectivity in D5 was ambiguous. Using MIRAS phases, we found eight selenium sites in a difference Fourier map calculated for the SeMet derivative, which allowed identification of methionines that were used as markers for the assignment of the rest of the sequence. After including the SeMet sites in heavy-atom positional refinement using SHARP, we calculated an improved solvent-flattened MIRAS electron density map to 3.2 Å resolution with a mean figure of merit of 0.509.
    • (1993) Practical Protein Crystallography
    • McRee, D.E.1
  • 33
    • 0030038464 scopus 로고    scopus 로고
    • Phasing and model building: A cryocooled xenon derivative was prepared with the apparatus described by S. M. Soltis, M. H. B. Stowell, M. C. Wiener, G. N. Phillips, D. C. Rees, J. Appl. Crystallogr. 30, 190 (1997). Data were processed and scaled with the HKL package [Z. Otwinowski and W. Minor, Methods Enzymol. 276, 307 (1997)]. Heavy-atom refinement and phasing were performed with the program SHARP [E. De La Fortelle and G. Bricogne, Methods Enzymol. 276, 472 (1997)]. Difference Patterson maps for the xenon and di-μ-iodobis(ethylenediamine) diplatinum nitrate (PIP) derivatives were interpreted with XTALVIEW [D. E. McRee, Practical Protein Crystallography (Academic Press, San Diego, CA, 1993)], and one xenon, three platinum, and two iodine sites were refined with SHARP. An initial MIRAS electron density map was calculated to 3.6 Å and solvent flattened with Solomon [J. P. Abrahams and A. G. W. Leslie, Acta Crystallogr. D52, 30 (1996)] as implemented in SHARP. A skeleton of the map [G. J. Kleywegt and T. A. Jones, Acta Crystallogr. D52, 826 (1997)] served as a starting point for model building with the program O (22). The initial electron density map revealed the Ig-like domain structures of the first four domains, but a definitive assignment of side chains was not possible, and the connectivity in D5 was ambiguous. Using MIRAS phases, we found eight selenium sites in a difference Fourier map calculated for the SeMet derivative, which allowed identification of methionines that were used as markers for the assignment of the rest of the sequence. After including the SeMet sites in heavy-atom positional refinement using SHARP, we calculated an improved solvent-flattened MIRAS electron density map to 3.2 Å resolution with a mean figure of merit of 0.509.
    • (1996) Acta Crystallogr. , vol.D52 , pp. 30
    • Abrahams, J.P.1    Leslie, A.G.W.2
  • 34
    • 0030498233 scopus 로고    scopus 로고
    • Phasing and model building: A cryocooled xenon derivative was prepared with the apparatus described by S. M. Soltis, M. H. B. Stowell, M. C. Wiener, G. N. Phillips, D. C. Rees, J. Appl. Crystallogr. 30, 190 (1997). Data were processed and scaled with the HKL package [Z. Otwinowski and W. Minor, Methods Enzymol. 276, 307 (1997)]. Heavy-atom refinement and phasing were performed with the program SHARP [E. De La Fortelle and G. Bricogne, Methods Enzymol. 276, 472 (1997)]. Difference Patterson maps for the xenon and di-μ-iodobis(ethylenediamine) diplatinum nitrate (PIP) derivatives were interpreted with XTALVIEW [D. E. McRee, Practical Protein Crystallography (Academic Press, San Diego, CA, 1993)], and one xenon, three platinum, and two iodine sites were refined with SHARP. An initial MIRAS electron density map was calculated to 3.6 Å and solvent flattened with Solomon [J. P. Abrahams and A. G. W. Leslie, Acta Crystallogr. D52, 30 (1996)] as implemented in SHARP. A skeleton of the map [G. J. Kleywegt and T. A. Jones, Acta Crystallogr. D52, 826 (1997)] served as a starting point for model building with the program O (22). The initial electron density map revealed the Ig-like domain structures of the first four domains, but a definitive assignment of side chains was not possible, and the connectivity in D5 was ambiguous. Using MIRAS phases, we found eight selenium sites in a difference Fourier map calculated for the SeMet derivative, which allowed identification of methionines that were used as markers for the assignment of the rest of the sequence. After including the SeMet sites in heavy-atom positional refinement using SHARP, we calculated an improved solvent-flattened MIRAS electron density map to 3.2 Å resolution with a mean figure of merit of 0.509.
    • (1997) Acta Crystallogr. , vol.D52 , pp. 826
    • Kleywegt, G.J.1    Jones, T.A.2
  • 35
    • 3543012707 scopus 로고    scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1998) Acta Crystallogr. , vol.D54 , pp. 905
    • Brünger, A.T.1
  • 36
    • 0026597444 scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1992) Nature , vol.355 , pp. 472
    • Brünger, A.T.1
  • 37
    • 84944812409 scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1986) Acta Crystallogr. , vol.A42 , pp. 140
    • Read, R.J.1
  • 38
    • 84945096204 scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1992) Acta Crystallogr. , vol.A48 , pp. 851
    • Hodel, A.1    Kim, S.-H.2    Brünger, A.T.3
  • 39
    • 0000243829 scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1993) J. Appl. Crystallogr. , vol.26 , pp. 283
    • Laskowski, R.A.1    McArthur, M.W.2    Moss, D.S.3    Thornton, J.M.4
  • 40
    • 0001339532 scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1991) J. Appl. Crystallogr. , vol.24 , pp. 946
    • Kraulis, P.J.1
  • 41
    • 0028057108 scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1994) Acta Cystallogr. , vol.D50 , pp. 869
    • Merritt, E.A.1    Murphy, M.E.P.2
  • 42
    • 0000732609 scopus 로고
    • 2. Several regions include residues with real space correlation values (22) below 1σ from the mean (residues 531 to 534, 582 to 586, 647 to 650, 676 to 679, 779 to 780, 892 to 899, 955 to 957, and 969 to 977). Ramachandran plot statistics (Table 1) are as defined by PROCHECK [R. A. Laskowski, M. W. McArthur, D. S. Moss, J. M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)]. Figures were made with MOLSCRIPT [P. J. Kraulis, J. Appl. Crystallogr. 24, 946 (1991)] and RASTER-3D [E. A. Merritt and M. E. P. Murphy, Acta Cystallogr. D50, 869 (1994)]. Molecular surfaces were generated with GRASP [A. Nicholls, R. Bharadwaj, B. Honig, Biophys. J. 64, A166 (1993)].
    • (1993) Biophys. J. , vol.64
    • Nicholls, A.1    Bharadwaj, R.2    Honig, B.3
  • 43
    • 0033105366 scopus 로고    scopus 로고
    • Equilibrium analytical ultracentrifugation analyses establish that Inv497 is monomeric at micromolar concentrations in solution [P. Dersch and R. R. Isberg, EMBO J. 18, 1199 (1999)]. Sedimentation velocity analytical uttracentrifugation experiments suggest that Inv497 is elongated in solution [X.-D. Su et al., Science 281, 991 (1998)]; thus, the extended conformation does not result from crystal packing forces.
    • (1999) EMBO J. , vol.18 , pp. 1199
    • Dersch, P.1    Isberg, R.R.2
  • 44
    • 0032516658 scopus 로고    scopus 로고
    • Equilibrium analytical ultracentrifugation analyses establish that Inv497 is monomeric at micromolar concentrations in solution [P. Dersch and R. R. Isberg, EMBO J. 18, 1199 (1999)]. Sedimentation velocity analytical uttracentrifugation experiments suggest that Inv497 is elongated in solution [X.-D. Su et al., Science 281, 991 (1998)]; thus, the extended conformation does not result from crystal packing forces.
    • (1998) Science , vol.281 , pp. 991
    • Su, X.-D.1
  • 45
    • 0030050396 scopus 로고    scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1996) Cell , vol.84 , pp. 155
    • Leahy, D.J.1    Aukhil, I.2    Erickson, H.P.3
  • 46
    • 0033559259 scopus 로고    scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1999) EMBO J. , vol.18 , pp. 1468
    • Sharma, A.1    Askari, J.A.2    Humphries, M.J.3    Jones, E.Y.4    Stuart, D.I.5
  • 47
    • 0032918787 scopus 로고    scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1999) Nature Struct Biol. , vol.6 , pp. 313
    • Kelly, G.1
  • 48
    • 0028774718 scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1994) Structure , vol.2 , pp. 1227
    • Weis, W.I.1    Drickamer, K.2
  • 49
    • 0027957760 scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1994) Nature , vol.367 , pp. 532
    • Graves, B.J.1
  • 50
    • 0033053772 scopus 로고    scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1999) Immunity , vol.10 , pp. 75
    • Boyington, J.C.1
  • 51
    • 0028924936 scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1995) Nature , vol.373 , pp. 539
    • Jones, E.Y.1
  • 52
    • 0029046132 scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 5714
    • Wang, J.1
  • 53
    • 0032516070 scopus 로고    scopus 로고
    • Protein structures: Fn-III 7-10 [Protein Data Bank (PDB) code 1FNF] [D. J. Leahy, I. Aukhil, H. P. Erickson, Cell 84, 155 (1996)]; Fn-III 12-14 (PDB code 1FNH) [A. Sharma, J. A. Askari, M. J. Humphries, E. Y. Jones, D. I. Stuart, EMBO J. 18, 1468 (1999)]; intimin (coordinates obtained from S. Matthews) [G. Kelly et al., Nature Struct Biol. 6, 313 (1999)]; mannose-binding protein (PDB code 1RTM) [W. I. Weis and K. Drickamer, Structure 2, 1227 (1994)]; E-selectin (PDB code 1ESL) [B. J. Graves et al., Nature 367, 532 (1994)]; (coordinates obtained from P. D. Sun) [J. C. Boyington et al., Immunity 10, 75 (1999)]; VCAM-1 (PDB code 1VSC) [E. Y. Jones et al., Nature 373, 539 (1995); J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 92, 5714 (1995)]; and ICAM-1 (PDB code 1IC1) [(23); J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, M. G. Rossmann, Proc Natl. Acad. Sci. U.S.A. 95, 4140 (1998)].
    • (1998) Proc Natl. Acad. Sci. U.S.A. , vol.95 , pp. 4140
    • Bella, J.1    Kolatkar, P.R.2    Marlor, C.W.3    Greve, J.M.4    Rossmann, M.G.5
  • 54
    • 0028361540 scopus 로고
    • IgSF domains were previously classified into V, C1, C2, 11, and 12 sets on the basis of similarities in sequence and structure [Y. Harpaz and C. Chothia, J. Mol. Biol. 238, 528 (1994); (23)]. The V and C1 sets are similar to antibody variable and constant domains, respectively. The V set consists of two β sheets: one containing β strands ABED and the other containing strands A'GFCC'C'. The C1 set contains an ABED and a GFC sheet. The two sheets of the C2 set are ABE and GFCC'. The I set domains are intermediate between the V and C1 sets. The I1 set contains ABED and A'GFC sheets, and the I2 set contains ABE and A'GFCC' sheets. D1 through D4 of Inv497 adopt folding topologies that resemble IgSF domains but lack the core residues and disulfide bonds conserved in IgSF members.
    • (1994) J. Mol. Biol. , vol.238 , pp. 528
    • Harpaz, Y.1    Chothia, C.2
  • 57
    • 0344631002 scopus 로고    scopus 로고
    • unpublished results
    • Although direct binding of invasin to a carbohydrate has not been demonstrated, high concentrations of N-acetylneuraminic acid [median inhibitory concentration of 20 mM) inhibit mammalian cell adhesion to immobilized invasin. A variety of other acetylated sugars showed no such inhibition (R. R. Isberg, unpublished results).
    • Isberg, R.R.1
  • 58
    • 0019443447 scopus 로고
    • Interrupted α helices have been observed in other protein structures, including subtilisin [reviewed by J. S. Richardson, Adv. Protein Chem. 34, 167 (1981)] and fibritin [Y. Tao, S. V. Strelkov, V. V. Mesyanzhinov, M. G. Rossmann, Structure 5, 789 (1997)].
    • (1981) Adv. Protein Chem. , vol.34 , pp. 167
    • Richardson, J.S.1
  • 59
    • 0031570687 scopus 로고    scopus 로고
    • Interrupted α helices have been observed in other protein structures, including subtilisin [reviewed by J. S. Richardson, Adv. Protein Chem. 34, 167 (1981)] and fibritin [Y. Tao, S. V. Strelkov, V. V. Mesyanzhinov, M. G. Rossmann, Structure 5, 789 (1997)].
    • (1997) Structure , vol.5 , pp. 789
    • Tao, Y.1    Strelkov, S.V.2    Mesyanzhinov, V.V.3    Rossmann, M.G.4
  • 60
    • 0345061587 scopus 로고    scopus 로고
    • note
    • 2.
  • 63
    • 0028245615 scopus 로고
    • R. D. Bowditch et al., ibid. 269, 10856 (1994); S.-I. Aota, M. Nomizu, K. M. Yamada, ibid., p. 24756; T. P. Ugarova et al., Biochemistry 34, 4457 (1995).
    • (1994) J. Biol. Chem. , vol.269 , pp. 10856
    • Bowditch, R.D.1
  • 65
    • 0028936788 scopus 로고
    • R. D. Bowditch et al., ibid. 269, 10856 (1994); S.-I. Aota, M. Nomizu, K. M. Yamada, ibid., p. 24756; T. P. Ugarova et al., Biochemistry 34, 4457 (1995).
    • (1995) Biochemistry , vol.34 , pp. 4457
    • Ugarova, T.P.1
  • 68
    • 0345061585 scopus 로고    scopus 로고
    • note
    • Single-letter abbreviations for the amino acid residues are as follows: A, Ala; D, Asp; G, Gly; L, Leu; N, Asn; P, Pro; R, Arg; T, Thr; and W, Trp.
  • 70
    • 0345493097 scopus 로고    scopus 로고
    • note
    • We thank S. M. Soltis and the staff at the Stanford Synchrotron Radiation Laboratory (SSRL) for help with xenon derivatization and data collection; M. J. Bennett, A. J. Chirino, L M. Sánchez, D. E. Vaughn, and A. P. Yeh for discussions and help with crystallographic software; S. Matthews for intimin coordinates; P. D. Sun for CD94 coordinates; W. I. Weis for helpful discussions about C-type lectin structures; and W. I Weis, J. M. Leong, and members of the Bjorkman lab for critical reading of the manuscript Inv497 coordinates have been deposited in the PDB (PDB code 1CWV).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.