메뉴 건너뛰기




Volumn 84, Issue 2, 1999, Pages 357-369

Stationary and self-similar processes driven by Lévy processes

Author keywords

Fractal spectral density; Normal inverse gaussian; Second order stationary increments; Type g

Indexed keywords


EID: 0033474816     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-4149(99)00061-7     Document Type: Article
Times cited : (22)

References (19)
  • 1
    • 0017468220 scopus 로고
    • Exponentially decreasing distributions for the logarithm of particle size
    • Barndorff-Nielsen, O.E., 1977. Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. London A 353, 401-419.
    • (1977) Proc. Roy. Soc. London A , vol.353 , pp. 401-419
    • Barndorff-Nielsen, O.E.1
  • 2
    • 0018543213 scopus 로고
    • Models for non-gaussian variation; with applications to turbulence
    • Barndorff-Nielsen, O.E., 1979. Models for non-gaussian variation; with applications to turbulence. Proc. Roy. Soc. London A 368, 501-520.
    • (1979) Proc. Roy. Soc. London A , vol.368 , pp. 501-520
    • Barndorff-Nielsen, O.E.1
  • 3
    • 0001878863 scopus 로고
    • The hyperbolic distribution in statistical physics
    • Barndorff-Nielsen, O.E., 1982. The hyperbolic distribution in statistical physics. Scand. J. Statist. 9, 43-46.
    • (1982) Scand. J. Statist. , vol.9 , pp. 43-46
    • Barndorff-Nielsen, O.E.1
  • 4
    • 0002443909 scopus 로고    scopus 로고
    • Processes of normal inverse gaussian type
    • Barndorff-Nielsen, O.E., 1998. Processes of normal inverse gaussian type. Finance Stochast. 2, 41-68.
    • (1998) Finance Stochast. , vol.2 , pp. 41-68
    • Barndorff-Nielsen, O.E.1
  • 10
    • 84972495814 scopus 로고
    • Hyperbolic distributions in finance
    • Eberlein, E., Keller, U., 1995. Hyperbolic distributions in finance. Bernoulli 1, 281-299.
    • (1995) Bernoulli , vol.1 , pp. 281-299
    • Eberlein, E.1    Keller, U.2
  • 13
    • 84968515060 scopus 로고
    • Semi-stable stochastic processes
    • Lamperti, J.W., 1962. Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62-78.
    • (1962) Trans. Amer. Math. Soc. , vol.104 , pp. 62-78
    • Lamperti, J.W.1
  • 14
    • 0001294305 scopus 로고
    • Spectral representations of infinite divisible processes
    • Rajput, B., Rosinski, J., 1989. Spectral representations of infinite divisible processes. Probab. Theory Rel. Fields 82, 451-487.
    • (1989) Probab. Theory Rel. Fields , vol.82 , pp. 451-487
    • Rajput, B.1    Rosinski, J.2
  • 15
    • 0002838952 scopus 로고
    • On a class of infinitely divisible processes represented as mixtures of gaussian processes
    • Cambanis, S., Samorodnitsky, G., Taqqu, M.S. (Eds.), Birkhäuser, Basel
    • Rosinski, J., 1991. On a class of infinitely divisible processes represented as mixtures of gaussian processes. In: Cambanis, S., Samorodnitsky, G., Taqqu, M.S. (Eds.), Stable Processes and Related Topics. Birkhäuser, Basel, pp. 27-41.
    • (1991) Stable Processes and Related Topics , pp. 27-41
    • Rosinski, J.1
  • 16
    • 0001464668 scopus 로고    scopus 로고
    • The normal inverse gaussian lévy process: Simulation and approximation
    • Rydberg, T., 1997a. The normal inverse gaussian lévy process: Simulation and approximation. Comm. Statist.: Stochastic Models 13, 887-910.
    • (1997) Comm. Statist.: Stochastic Models , vol.13 , pp. 887-910
    • Rydberg, T.1
  • 17
    • 0000200814 scopus 로고    scopus 로고
    • Existence of unique equivalent martingale measures in a markovian setting
    • Rydberg, T., 1997b. Existence of unique equivalent martingale measures in a markovian setting. Finance Stochast. 1, 251-257.
    • (1997) Finance Stochast. , vol.1 , pp. 251-257
    • Rydberg, T.1
  • 18
    • 0033411027 scopus 로고    scopus 로고
    • Generalized hyperbolic diffusions with applications towards finance
    • Rydberg, T., 1999. Generalized hyperbolic diffusions with applications towards finance. Math. Finance 9, 183-201.
    • (1999) Math. Finance , vol.9 , pp. 183-201
    • Rydberg, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.