메뉴 건너뛰기




Volumn 2, Issue 4, 1999, Pages 401-434

Infinite products of finite simple groups II

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033471202     PISSN: 14335883     EISSN: None     Source Type: Journal    
DOI: 10.1515/jgth.1999.029     Document Type: Article
Times cited : (12)

References (23)
  • 4
    • 84927627579 scopus 로고
    • Subgroups of small index in infinite symmetric groups
    • J. D. Dixon, P. M. Neumann and S. Thomas. Subgroups of small index in infinite symmetric groups. Bull. London Math. Soc. 18 (1986), 580-586.
    • (1986) Bull. London Math. Soc. , vol.18 , pp. 580-586
    • Dixon, J.D.1    Neumann, P.M.2    Thomas, S.3
  • 6
    • 0000059659 scopus 로고
    • Subgroups of small index in infinite general linear groups
    • D. M. Evans. Subgroups of small index in infinite general linear groups. Bull London Math. Soc. 18 (1986), 587-590.
    • (1986) Bull London Math. Soc. , vol.18 , pp. 587-590
    • Evans, D.M.1
  • 7
    • 0001271617 scopus 로고
    • The small index property for infinite dimensional classical groups
    • D. M. Evans. The small index property for infinite dimensional classical groups. J. Algebra 136 (1991), 248-264.
    • (1991) J. Algebra , vol.136 , pp. 248-264
    • Evans, D.M.1
  • 8
    • 0000605583 scopus 로고
    • A propos du groupe des automorphismes de (double-struck Q sign; ≤)
    • C. Gourion. A propos du groupe des automorphismes de (double-struck Q sign; ≤). C. R. Acad. Sci. Paris Sér. I Math. 315, (1992), 1329-1331.
    • (1992) C. R. Acad. Sci. Paris Sér. I Math. , vol.315 , pp. 1329-1331
    • Gourion, C.1
  • 9
    • 84962994611 scopus 로고
    • The small index property for ω-stable ω-categorical structures and for the random graph
    • W. Hodges, I. Hodkinson, D. Lascar and S. Shelah. The small index property for ω-stable ω-categorical structures and for the random graph. J. London Math. Soc. (2) 48 (1993), 204-218.
    • (1993) J. London Math. Soc. (2) , vol.48 , pp. 204-218
    • Hodges, W.1    Hodkinson, I.2    Lascar, D.3    Shelah, S.4
  • 11
    • 0005519158 scopus 로고
    • Une propriété des produits directs infinis groupes finis isomorphes
    • S. Koppelberg and J. Tits. Une propriété des produits directs infinis groupes finis isomorphes. C. R. Acad. Sci. Paris Sér. A 279 (1974), 583-585.
    • (1974) C. R. Acad. Sci. Paris Sér. A , vol.279 , pp. 583-585
    • Koppelberg, S.1    Tits, J.2
  • 15
    • 0040597267 scopus 로고
    • An algebraically closed field
    • F. J. Rayner. An algebraically closed field. Glasgow Math. J. 9 (1968), 146-151.
    • (1968) Glasgow Math. J. , vol.9 , pp. 146-151
    • Rayner, F.J.1
  • 16
    • 21444433753 scopus 로고    scopus 로고
    • Infinite products of finite simple groups
    • J. Saxl, S. Shelah and S. Thomas. Infinite products of finite simple groups. Trans. Amer. Math. Soc. 348 (1996), 4611-4641.
    • (1996) Trans. Amer. Math. Soc. , vol.348 , pp. 4611-4641
    • Saxl, J.1    Shelah, S.2    Thomas, S.3
  • 18
    • 0347202787 scopus 로고
    • Endomorphisms of infinite symmetric groups
    • S. W. Semmes. Endomorphisms of infinite symmetric groups. Abstracts Amer. Math. Soc. 2 (1981), 426.
    • (1981) Abstracts Amer. Math. Soc. , vol.2 , pp. 426
    • Semmes, S.W.1
  • 19
    • 0004211763 scopus 로고
    • Springer-Verlag
    • J. P. Serre. Trees (Springer-Verlag, 1980).
    • (1980) Trees
    • Serre, J.P.1
  • 21
    • 0040030908 scopus 로고
    • The geometry of the classical groups
    • Heldermann Verlag
    • D. E. Taylor. The geometry of the classical groups. Sigma Series in Pure Math. no. 9 (Heldermann Verlag, 1992).
    • (1992) Sigma Series in Pure Math. , vol.9
    • Taylor, D.E.1
  • 22
    • 38249023630 scopus 로고
    • Infinite permutation groups II: Subgroups of small index
    • J. K. Truss. Infinite permutation groups II: subgroups of small index. J. Algebra 120 (1989), 494-515.
    • (1989) J. Algebra , vol.120 , pp. 494-515
    • Truss, J.K.1
  • 23
    • 84968498703 scopus 로고
    • Every linear transformation is a sum of non-singular ones
    • D. Zelinsky. Every linear transformation is a sum of non-singular ones. Proc. Amer. Math. Soc. 5 (1954), 627-630.
    • (1954) Proc. Amer. Math. Soc. , vol.5 , pp. 627-630
    • Zelinsky, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.