-
3
-
-
84986500394
-
Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency
-
Cowen, L. J., Cowen, R. H. and Woodall, D. R. (1986) Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory 10 187-195.
-
(1986)
J. Graph Theory
, vol.10
, pp. 187-195
-
-
Cowen, L.J.1
Cowen, R.H.2
Woodall, D.R.3
-
6
-
-
0012069660
-
A survey of (m,k)-colorings
-
Quo Vadis, Graph Theory? (J. Gimbel, J. W. Kennedy and L. V. Quintas, eds)
-
Frick, M. (1993) A survey of (m,k)-colorings. In Quo Vadis, Graph Theory? (J. Gimbel, J. W. Kennedy and L. V. Quintas, eds), Ann. Discrete Math. 55 45-48.
-
(1993)
Ann. Discrete Math.
, vol.55
, pp. 45-48
-
-
Frick, M.1
-
7
-
-
0000027149
-
The complexity of planar graph choosability
-
Gutner, S. (1996) The complexity of planar graph choosability. Discrete Math. 159 119-130.
-
(1996)
Discrete Math.
, vol.159
, pp. 119-130
-
-
Gutner, S.1
-
9
-
-
38149146651
-
Algorithmic complexity of list colorings
-
Kratochvíl, J. and Tuza, Z. (1994) Algorithmic complexity of list colorings. Discrete Appl. Math. 50 297-302.
-
(1994)
Discrete Appl. Math.
, vol.50
, pp. 297-302
-
-
Kratochvíl, J.1
Tuza, Z.2
-
10
-
-
0002895649
-
A small non-4-choosable planar graph
-
Mirzakhani, M. (1996) A small non-4-choosable planar graph. Bull. Inst. Combin. Appl. 17 15-18.
-
(1996)
Bull. Inst. Combin. Appl.
, vol.17
, pp. 15-18
-
-
Mirzakhani, M.1
-
11
-
-
0003005975
-
Every planar graph is 5-choosable
-
Thomassen, C. (1994) Every planar graph is 5-choosable. J. Combin. Theory Ser. B 62 180-181.
-
(1994)
J. Combin. Theory Ser. B
, vol.62
, pp. 180-181
-
-
Thomassen, C.1
-
12
-
-
0000757205
-
3-list-coloring planar graphs of girth 5
-
Thomassen, C. (1994) 3-list-coloring planar graphs of girth 5. J. Combin. Theory Ser. B 64 101-107.
-
(1994)
J. Combin. Theory Ser. B
, vol.64
, pp. 101-107
-
-
Thomassen, C.1
-
13
-
-
85034541770
-
A Grötzsch-type theorem for list colourings with impropriety one
-
To appear
-
Škrekovski, R. A Grötzsch-type theorem for list colourings with impropriety one. To appear in Combinatorics, Probability and Computing.
-
Combinatorics, Probability and Computing
-
-
Škrekovski, R.1
-
14
-
-
0002221232
-
Coloring the vertices of a graph in prescribed colors
-
In Russian
-
Vizing, V. G. (1976) Coloring the vertices of a graph in prescribed colors. Metody Diskret. Analiz. 29 3-10. (In Russian.)
-
(1976)
Metody Diskret. Analiz.
, vol.29
, pp. 3-10
-
-
Vizing, V.G.1
-
15
-
-
43949166590
-
List colourings of planar graphs
-
Voigt, M. (1993) List colourings of planar graphs. Discrete Math. 120 215-219.
-
(1993)
Discrete Math.
, vol.120
, pp. 215-219
-
-
Voigt, M.1
-
16
-
-
0011521158
-
A not 3-choosable planar graph without 3-cycles
-
Voigt, M. (1995) A not 3-choosable planar graph without 3-cycles. Discrete Math. 146 325-328.
-
(1995)
Discrete Math.
, vol.146
, pp. 325-328
-
-
Voigt, M.1
-
17
-
-
0031542607
-
On 3-colorable non 4-choosable planar graphs
-
Voigt, M. and Wirth, B. (1997) On 3-colorable non 4-choosable planar graphs. J. Graph Theory 24 233-235.
-
(1997)
J. Graph Theory
, vol.24
, pp. 233-235
-
-
Voigt, M.1
Wirth, B.2
-
18
-
-
0347632590
-
Improper colourings of graphs
-
(R. Nelson and R. J. Wilson, eds), Longman Scientific and Technical
-
Woodall, D. R. (1990) Improper colourings of graphs. In Graph Colourings (R. Nelson and R. J. Wilson, eds), Longman Scientific and Technical.
-
(1990)
Graph Colourings
-
-
Woodall, D.R.1
|