메뉴 건너뛰기




Volumn 8, Issue 3, 1999, Pages 293-299

List Improper Colourings of Planar Graphs

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033467290     PISSN: 09635483     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0963548399003752     Document Type: Article
Times cited : (108)

References (18)
  • 3
    • 84986500394 scopus 로고
    • Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency
    • Cowen, L. J., Cowen, R. H. and Woodall, D. R. (1986) Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory 10 187-195.
    • (1986) J. Graph Theory , vol.10 , pp. 187-195
    • Cowen, L.J.1    Cowen, R.H.2    Woodall, D.R.3
  • 6
    • 0012069660 scopus 로고
    • A survey of (m,k)-colorings
    • Quo Vadis, Graph Theory? (J. Gimbel, J. W. Kennedy and L. V. Quintas, eds)
    • Frick, M. (1993) A survey of (m,k)-colorings. In Quo Vadis, Graph Theory? (J. Gimbel, J. W. Kennedy and L. V. Quintas, eds), Ann. Discrete Math. 55 45-48.
    • (1993) Ann. Discrete Math. , vol.55 , pp. 45-48
    • Frick, M.1
  • 7
    • 0000027149 scopus 로고    scopus 로고
    • The complexity of planar graph choosability
    • Gutner, S. (1996) The complexity of planar graph choosability. Discrete Math. 159 119-130.
    • (1996) Discrete Math. , vol.159 , pp. 119-130
    • Gutner, S.1
  • 9
    • 38149146651 scopus 로고
    • Algorithmic complexity of list colorings
    • Kratochvíl, J. and Tuza, Z. (1994) Algorithmic complexity of list colorings. Discrete Appl. Math. 50 297-302.
    • (1994) Discrete Appl. Math. , vol.50 , pp. 297-302
    • Kratochvíl, J.1    Tuza, Z.2
  • 10
    • 0002895649 scopus 로고    scopus 로고
    • A small non-4-choosable planar graph
    • Mirzakhani, M. (1996) A small non-4-choosable planar graph. Bull. Inst. Combin. Appl. 17 15-18.
    • (1996) Bull. Inst. Combin. Appl. , vol.17 , pp. 15-18
    • Mirzakhani, M.1
  • 11
    • 0003005975 scopus 로고
    • Every planar graph is 5-choosable
    • Thomassen, C. (1994) Every planar graph is 5-choosable. J. Combin. Theory Ser. B 62 180-181.
    • (1994) J. Combin. Theory Ser. B , vol.62 , pp. 180-181
    • Thomassen, C.1
  • 12
    • 0000757205 scopus 로고
    • 3-list-coloring planar graphs of girth 5
    • Thomassen, C. (1994) 3-list-coloring planar graphs of girth 5. J. Combin. Theory Ser. B 64 101-107.
    • (1994) J. Combin. Theory Ser. B , vol.64 , pp. 101-107
    • Thomassen, C.1
  • 13
    • 85034541770 scopus 로고    scopus 로고
    • A Grötzsch-type theorem for list colourings with impropriety one
    • To appear
    • Škrekovski, R. A Grötzsch-type theorem for list colourings with impropriety one. To appear in Combinatorics, Probability and Computing.
    • Combinatorics, Probability and Computing
    • Škrekovski, R.1
  • 14
    • 0002221232 scopus 로고
    • Coloring the vertices of a graph in prescribed colors
    • In Russian
    • Vizing, V. G. (1976) Coloring the vertices of a graph in prescribed colors. Metody Diskret. Analiz. 29 3-10. (In Russian.)
    • (1976) Metody Diskret. Analiz. , vol.29 , pp. 3-10
    • Vizing, V.G.1
  • 15
    • 43949166590 scopus 로고
    • List colourings of planar graphs
    • Voigt, M. (1993) List colourings of planar graphs. Discrete Math. 120 215-219.
    • (1993) Discrete Math. , vol.120 , pp. 215-219
    • Voigt, M.1
  • 16
    • 0011521158 scopus 로고
    • A not 3-choosable planar graph without 3-cycles
    • Voigt, M. (1995) A not 3-choosable planar graph without 3-cycles. Discrete Math. 146 325-328.
    • (1995) Discrete Math. , vol.146 , pp. 325-328
    • Voigt, M.1
  • 17
    • 0031542607 scopus 로고    scopus 로고
    • On 3-colorable non 4-choosable planar graphs
    • Voigt, M. and Wirth, B. (1997) On 3-colorable non 4-choosable planar graphs. J. Graph Theory 24 233-235.
    • (1997) J. Graph Theory , vol.24 , pp. 233-235
    • Voigt, M.1    Wirth, B.2
  • 18
    • 0347632590 scopus 로고
    • Improper colourings of graphs
    • (R. Nelson and R. J. Wilson, eds), Longman Scientific and Technical
    • Woodall, D. R. (1990) Improper colourings of graphs. In Graph Colourings (R. Nelson and R. J. Wilson, eds), Longman Scientific and Technical.
    • (1990) Graph Colourings
    • Woodall, D.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.