-
1
-
-
0000475515
-
A study of difference schemes with the first derivate approximated by a central difference ratio
-
V.B. Andréiev and N.V. Kopteva, A study of difference schemes with the first derivate approximated by a central difference ratio, Comput. Math. Math. Phys. 36 (1996) 1065-1078.
-
(1996)
Comput. Math. Math. Phys.
, vol.36
, pp. 1065-1078
-
-
Andréiev, V.B.1
Kopteva, N.V.2
-
2
-
-
0041673850
-
On the optimization of methods for solving boundary value problems with a boundary layer
-
A.S. Bakhvalov, On the optimization of methods for solving boundary value problems with a boundary layer, U.S.S.R. Comput. Math. Math. Phys. 9 (1969) 139-166.
-
(1969)
U.S.S.R. Comput. Math. Math. Phys.
, vol.9
, pp. 139-166
-
-
Bakhvalov, A.S.1
-
3
-
-
0042675667
-
Uniform convergence of arbitrary order on nonuniform meshes for a singularly perturbed boundary value problem
-
C. Clavero, F. Lisbona and J.J.H. Miller, Uniform convergence of arbitrary order on nonuniform meshes for a singularly perturbed boundary value problem, J. Comput. Appl. Math. 59 (1995) 155-171.
-
(1995)
J. Comput. Appl. Math.
, vol.59
, pp. 155-171
-
-
Clavero, C.1
Lisbona, F.2
Miller, J.J.H.3
-
4
-
-
84966237759
-
Uniform high-order difference schemes for a singularly perturbed two point boundary value problem
-
E.C. Gartland, Uniform high-order difference schemes for a singularly perturbed two point boundary value problem, Math. Comp. 48 (1987) 551-564.
-
(1987)
Math. Comp.
, vol.48
, pp. 551-564
-
-
Gartland, E.C.1
-
5
-
-
84966250007
-
Graded-mesh difference schemes for singularly perturbed two-point boundary value problems
-
E.C. Gartland, Graded-mesh difference schemes for singularly perturbed two-point boundary value problems, Math. Comp. 51 (1988) 631-657.
-
(1988)
Math. Comp.
, vol.51
, pp. 631-657
-
-
Gartland, E.C.1
-
6
-
-
0038197646
-
Uniform fourth order difference scheme for a singular perturbation problem
-
D. Herceg, Uniform fourth order difference scheme for a singular perturbation problem, Numer. Math. 56 (1990) 675-693.
-
(1990)
Numer. Math.
, vol.56
, pp. 675-693
-
-
Herceg, D.1
-
7
-
-
84966216257
-
Analysis of some difference approximations for a singular perturbation problem without turning points
-
R.B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978) 1025-1039.
-
(1978)
Math. Comp.
, vol.32
, pp. 1025-1039
-
-
Kellogg, R.B.1
Tsan, A.2
-
8
-
-
21744448456
-
On the convergence, uniform with respect to a small parameter, of a four-point scheme for a one-dimensional stationary convection-diffusion equation
-
N.V. Kopteva, On the convergence, uniform with respect to a small parameter, of a four-point scheme for a one-dimensional stationary convection-diffusion equation, Differential Equations 32 (1997) 958-964.
-
(1997)
Differential Equations
, vol.32
, pp. 958-964
-
-
Kopteva, N.V.1
-
9
-
-
84966246071
-
A high-order difference method for differential equations
-
R.E. Lynch and J.R. Rice, A high-order difference method for differential equations, Math Comp. 34 (1980) 333-372.
-
(1980)
Math Comp.
, vol.34
, pp. 333-372
-
-
Lynch, R.E.1
Rice, J.R.2
-
10
-
-
0042174482
-
The hp streamline diffusion finite element method for convection dominated problems in one space dimension
-
Research Report No. 98-10, Zurich October
-
J.M. Melenk and C. Schwab, The hp streamline diffusion finite element method for convection dominated problems in one space dimension, Research Report No. 98-10, Seminar für Angewandte Mathematik, Zurich (October 1998).
-
(1998)
Seminar für Angewandte Mathematik
-
-
Melenk, J.M.1
Schwab, C.2
-
13
-
-
22044433064
-
Layer-adapted grids for singular perturbation problems
-
H.G. Roos, Layer-adapted grids for singular perturbation problems, ZAMM 78 (1998) 291-309.
-
(1998)
ZAMM
, vol.78
, pp. 291-309
-
-
Roos, H.G.1
-
15
-
-
0038536334
-
A difference scheme on a non-uniform mesh for a differential equation with a small parameter in highest derivative
-
G.I. Shishkin, A difference scheme on a non-uniform mesh for a differential equation with a small parameter in highest derivative, U.S.S.R. Comput. Math. Math. Phys. 23 (1983) 59-66.
-
(1983)
U.S.S.R. Comput. Math. Math. Phys.
, vol.23
, pp. 59-66
-
-
Shishkin, G.I.1
-
16
-
-
84961474196
-
Grid approximation of singularly perturbed boundary value problems with convective terms
-
G.I. Shishkin, Grid approximation of singularly perturbed boundary value problems with convective terms, Soviet J. Numer. Anal. Math. Modeling 5 (1990) 173-187.
-
(1990)
Soviet J. Numer. Anal. Math. Modeling
, vol.5
, pp. 173-187
-
-
Shishkin, G.I.1
-
17
-
-
0031141256
-
The midpoint upwind scheme
-
M. Stynes and H.G. Roos, The midpoint upwind scheme, Appl. Numer. Math. 23 (1997) 361-374.
-
(1997)
Appl. Numer. Math.
, vol.23
, pp. 361-374
-
-
Stynes, M.1
Roos, H.G.2
-
18
-
-
0042174483
-
A finite difference analysis of a streamline diffusion method on a Shishkin mesh
-
M. Stynes and L. Tobiska, A finite difference analysis of a streamline diffusion method on a Shishkin mesh, to appear in Numer. Algorithms.
-
Numer. Algorithms
-
-
Stynes, M.1
Tobiska, L.2
-
19
-
-
0001741172
-
On a numerical solution of a type of singularly perturbed problem by using a special discretization mesh
-
Univ. Novom Sadu Zb. Rad. Prirod.
-
R. Vulanovic, On a numerical solution of a type of singularly perturbed problem by using a special discretization mesh, Univ. Novom Sadu Zb. Rad. Prirod., Mat. Fak Ser. Mat. 13 (1983) 187-201.
-
(1983)
Mat. Fak Ser. Mat.
, vol.13
, pp. 187-201
-
-
Vulanovic, R.1
-
20
-
-
84983920897
-
Non-equidistant generalizations of the Gushchin-Shennikov scheme
-
R. Vulanovic, Non-equidistant generalizations of the Gushchin-Shennikov scheme, ZAMM 67 (1987) 625-632.
-
(1987)
ZAMM
, vol.67
, pp. 625-632
-
-
Vulanovic, R.1
-
21
-
-
0000667216
-
Uniform convergence of discretization error for a singular perturbation problem, Numer
-
P. Wesseling, Uniform convergence of discretization error for a singular perturbation problem, Numer. Methods for Partial Differential Equations 12 (1996) 657-671.
-
(1996)
Methods for Partial Differential Equations
, vol.12
, pp. 657-671
-
-
Wesseling, P.1
|