메뉴 건너뛰기




Volumn 17, Issue 3, 1999, Pages 339-358

Tracking properties of trajectories on random attracting sets

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033411440     PISSN: 07362994     EISSN: None     Source Type: Journal    
DOI: 10.1080/07362999908809605     Document Type: Article
Times cited : (11)

References (26)
  • 8
    • 0004075847 scopus 로고
    • Inertial manifolds for stochastic dissipative dynamical systems
    • I.D. CHUESHOV AND T.V. GIRYA, Inertial manifolds for stochastic dissipative dynamical systems, Doklady of Acad. Sci. Ukraine, 7 (1994), 42-45.
    • (1994) Doklady of Acad. Sci. Ukraine , vol.7 , pp. 42-45
    • Chueshov, I.D.1    Girya, T.V.2
  • 9
    • 0003990945 scopus 로고    scopus 로고
    • Construction of stochastic inertial manifold using backward integration
    • G. DA PRATO AND A. DEBUSSCHE, Construction of stochastic inertial manifold using backward integration, Stochastics and Stochastics Reports, 52 (3+4) (1996), 305-324
    • (1996) Stochastics and Stochastics Reports , vol.52 , Issue.3-4 , pp. 305-324
    • Da Prato, G.1    Debussche, A.2
  • 10
    • 0031507560 scopus 로고    scopus 로고
    • On the finite dimensionality of random attractors
    • A. DEBUSSCHE, On the finite dimensionality of random attractors, Stoch. Anal and Appl. 15 (4) (1997), 473-492.
    • (1997) Stoch. Anal and Appl. , vol.15 , Issue.4 , pp. 473-492
    • Debussche, A.1
  • 13
    • 0001356311 scopus 로고
    • Persistence and smoothness of invariant manifolds for flows
    • N. FENICHEL, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 23 (1971), 193-226.
    • (1971) Indiana Univ. Math. J. , vol.23 , pp. 193-226
    • Fenichel, N.1
  • 15
    • 0002449201 scopus 로고
    • Sur le comportement global des solutions non-stationnaires des equations de Navier-Stokes en dimension 2
    • C. FOIAS AND G. PRODI, Sur le comportement global des solutions non-stationnaires des equations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34
    • (1967) Rend. Sem. Mat. Univ. Padova , vol.39 , pp. 1-34
    • Foias, C.1    Prodi, G.2
  • 16
    • 0000640733 scopus 로고
    • Inertial manifolds for nonlinear evolution equations
    • C. FOIAS, G.R. SELL AND R. TEMAM, Inertial manifolds for nonlinear evolution equations, J. Differential Equations, 73 (1985), 309-353.
    • (1985) J. Differential Equations , vol.73 , pp. 309-353
    • Foias, C.1    Sell, G.R.2    Temam, R.3
  • 17
    • 0001686992 scopus 로고
    • Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations
    • C. FOIAS, G.R. SELL AND E.S. TITI, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dyn. Diff. Eq, 1 (1989), 199-244.
    • (1989) J. Dyn. Diff. Eq , vol.1 , pp. 199-244
    • Foias, C.1    Sell, G.R.2    Titi, E.S.3
  • 18
    • 0003293929 scopus 로고
    • Asymptotic behavior of dissipative systems
    • AMS, Providence
    • J.K. HALE, Asymptotic behavior of dissipative systems, Math. Surveys and Monographs no. 25, AMS, Providence 1988.
    • (1988) Math. Surveys and Monographs , vol.25
    • Hale, J.K.1
  • 19
    • 0003304963 scopus 로고
    • Geometric theory of semilinear parabolic equations
    • Springer-Verlag, New York
    • D. HENRY, Geometric Theory of Semilinear Parabolic Equations, Lect. Not. in Math., 840 (1981), Springer-Verlag, New York.
    • (1981) Lect. Not. in Math. , vol.840
    • Henry, D.1
  • 22
    • 0000242930 scopus 로고    scopus 로고
    • The asymptotic completeness of inertial manifolds
    • J.C. ROBINSON, The asymptotic completeness of inertial manifolds, Nonlinearity, 9 (1996), 1325-1340.
    • (1996) Nonlinearity , vol.9 , pp. 1325-1340
    • Robinson, J.C.1
  • 23
    • 0039584618 scopus 로고    scopus 로고
    • Global attractors: Topology and finite-dimensional dynamics
    • J.C. ROBINSON, Global attractors: topology and finite-dimensional dynamics, to appear in J.Dyn. Diff. Eq. (1997).
    • (1997) J.Dyn. Diff. Eq.
    • Robinson, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.