-
2
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
Morgan Kaufmann, San Francisco
-
G. H. John, R. Kohavi, K. Pfloger. Irrelevant features and the subset selection problem, Machine Learning: Proceedings of the 11-th International Conference, pp121-129, Morgan Kaufmann, San Francisco, 1994
-
(1994)
Machine Learning: Proceedings of the 11-th International Conference
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfloger, K.3
-
4
-
-
0031191557
-
Feature subset selection with a simulated annealing data mining algorithm
-
C. W. D. Justin and R. J. Victor. Feature subset selection with a simulated annealing data mining algorithm. J. of Intelligent Information Systems, vol.9, pp57-81, 1997
-
(1997)
J. of Intelligent Information Systems
, vol.9
, pp. 57-81
-
-
Justin, C.W.D.1
Victor, R.J.2
-
5
-
-
0000188848
-
Extension matrix theory of learning from examples
-
J. R. Hong. Extension matrix theory of learning from examples. Chinese Journal of Computers. Vol. 14(6), pp401-410, 1991
-
(1991)
Chinese Journal of Computers
, vol.14
, Issue.6
, pp. 401-410
-
-
Hong, J.R.1
-
6
-
-
34250113712
-
AE1: An extension matrix approximate method for the general covering problem
-
J. R. Hong. AE1: an extension matrix approximate method for the general covering problem. Computer and Information Science, vol. 14(6), pp421-437, 1985
-
(1985)
Computer and Information Science
, vol.14
, Issue.6
, pp. 421-437
-
-
Hong, J.R.1
-
7
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eugenics, vol. 7, pp 179-188, 1936
-
(1936)
Ann. Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.1
-
8
-
-
0030576819
-
Learning fuzzy rules and approximate reasoning in fuzzy networks and hybrid systems
-
N. K. Kasabov. Learning fuzzy rules and approximate reasoning in fuzzy networks and hybrid systems. Fuzzy Sets and Systems, vol. 82, pp.135-149, 1996
-
(1996)
Fuzzy Sets and Systems
, vol.82
, pp. 135-149
-
-
Kasabov, N.K.1
-
10
-
-
0030385720
-
Input selection for ANFIS learning
-
New Orleans, LA, USA
-
J.-S. R. Jang. Input Selection for ANFIS Learning. Proceedings of IEEE International Conference on Fuzzy Systems, vol. 2, ppl493-1499, New Orleans, LA, USA, 1996
-
(1996)
Proceedings of IEEE International Conference on Fuzzy Systems
, vol.2
, pp. 1493-1499
-
-
Jang, J.-S.R.1
-
12
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan. Induction of decision trees. Machine Learning, vol. 1, pp.81-106, 1986
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
14
-
-
0345143106
-
The problem of finding optimal subset of features
-
B. Chen and J. R. Hong. The problem of finding optimal subset of features. Chinese Journal of Computers, vol. 20(2), pp133-138, 1997
-
(1997)
Chinese Journal of Computers
, vol.20
, Issue.2
, pp. 133-138
-
-
Chen, B.1
Hong, J.R.2
-
15
-
-
85005299854
-
The multipurpose incremental learning systems
-
(M. Revist ed.), Philaddelphia, PA: Morgan Kaufmann
-
R. S. Michalski, I. Mozetic and J. R. Hong, The multipurpose incremental learning systems. Proceedings of the 5-th National Conference on Artificial Intelligence (M. Revist ed.), Philaddelphia, PA: Morgan Kaufmann, ppl041-1045, 1986
-
(1986)
Proceedings of the 5-th National Conference on Artificial Intelligence
, pp. 1041-1045
-
-
Michalski, R.S.1
Mozetic, I.2
Hong, J.R.3
|