-
1
-
-
0033410127
-
A posteriori error estimation for the finite element method-of-lines solution of parabolic problems
-
S. ADJERID, J.E. FLAHERTY, AND I. BADUSKA, A posteriori error estimation for the finite element method-of-lines solution of parabolic problems, Math. Models Methods Appl. Sci., 9 (1999), pp. 261-286.
-
(1999)
Math. Models Methods Appl. Sci.
, vol.9
, pp. 261-286
-
-
Adjerid, S.1
Flaherty, J.E.2
Baduska, I.3
-
2
-
-
0033293882
-
A posteriori error estimation for diffusion systems
-
S. ADJERID, B. BELGUENDOUZ, AND J.E. FLAHERTY, A posteriori error estimation for diffusion systems, SIAM J. Sci. Comput., 21 (1999), pp. 728-746.
-
(1999)
SIAM J. Sci. Comput.
, vol.21
, pp. 728-746
-
-
Adjerid, S.1
Belguendouz, B.2
Flaherty, J.E.3
-
3
-
-
0000613724
-
Error estimates for adaptive finite element computations
-
I. BABUSKA AND W.C. RHEINBOLDT, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), pp. 736-754.
-
(1978)
SIAM J. Numer. Anal.
, vol.15
, pp. 736-754
-
-
Babuska, I.1
Rheinboldt, W.C.2
-
4
-
-
0004806316
-
Reliable error estimation and mesh adaptation for the finite element method
-
North-Holland, New York
-
I. BABUSKA AND W.C. RHEINBOLDT, Reliable error estimation and mesh adaptation for the finite element method, in Computational Methods in Nonlinear Mechanics, North-Holland, New York, 1980, pp. 67-108.
-
(1980)
Computational Methods in Nonlinear Mechanics
, pp. 67-108
-
-
Babuska, I.1
Rheinboldt, W.C.2
-
5
-
-
0002564037
-
The efficient implementation of local mesh refinement algorithms
-
I. Babuska, J. Chandra, and J.E. Flaherty, eds., SIAM, Philadelphia
-
R.E. BANK, The efficient implementation of local mesh refinement algorithms, in Adaptive Computational Methods for Partial Differential Equations, I. Babuska, J. Chandra, and J.E. Flaherty, eds., SIAM, Philadelphia, 1983, pp. 74-81.
-
(1983)
Adaptive Computational Methods for Partial Differential Equations
, pp. 74-81
-
-
Bank, R.E.1
-
6
-
-
0004003433
-
-
North-Holland, New York
-
K.E. BRENAN, S.L. CAMPBELL, AND L.R. PETZOLD, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, North-Holland, New York, 1989.
-
(1989)
Numerical Solution of Initial Value Problems in Differential-algebraic Equations
-
-
Brenan, K.E.1
Campbell, S.L.2
Petzold, L.R.3
-
7
-
-
0000286812
-
Using Krylov methods in the solution of large-scale differential-algebraic systems
-
P.N. BROWN, A.C. HINDMARSH, AND L.R. PETZOLD, Using Krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15 (1994), pp. 1467-1488.
-
(1994)
SIAM J. Sci. Comput.
, vol.15
, pp. 1467-1488
-
-
Brown, P.N.1
Hindmarsh, A.C.2
Petzold, L.R.3
-
8
-
-
0032008348
-
Edge of chaos and local activity domain of Fitzhugh-Nagumo equation
-
R. DOGARU AND L.O. CHUA, Edge of chaos and local activity domain of Fitzhugh-Nagumo equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), pp. 211-257.
-
(1998)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.8
, pp. 211-257
-
-
Dogaru, R.1
Chua, L.O.2
-
9
-
-
84904150653
-
Adaptive finite element methods for parabolic problems IV: Nonlinear problems
-
K. ERIKSSON AND C. JOHNSON, Adaptive finite element methods for parabolic problems IV: Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), pp. 1729-1749.
-
(1995)
SIAM J. Numer. Anal.
, vol.32
, pp. 1729-1749
-
-
Eriksson, K.1
Johnson, C.2
-
10
-
-
0003983881
-
-
J.E. FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, AND J.D. VASILAKIS, EDS., SIAM, Philadelphia, PA
-
J.E. FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, AND J.D. VASILAKIS, EDS., Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989.
-
(1989)
Adaptive Methods for Partial Differential Equations
-
-
-
11
-
-
0002176065
-
Experiments with an adaptive h-, p-, and r-refinement finite element method for parabolic systems
-
G.D. Byrne and W.E. Schiesser, eds., World Scientific, Singapore
-
J.E. FLAHERTY AND Y. WANG, Experiments with an adaptive h-, p-, and r-refinement finite element method for parabolic systems, in Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, G.D. Byrne and W.E. Schiesser, eds., World Scientific, Singapore, 1992, pp. 55-80.
-
(1992)
Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs
, pp. 55-80
-
-
Flaherty, J.E.1
Wang, Y.2
-
12
-
-
0004317158
-
-
Springer-Verlag, Berlin
-
E. HAIRER, S.P. NORSETT, AND G. WANNER, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin, 1987.
-
(1987)
Solving Ordinary Differential Equations I: Nonstiff Problems
-
-
Hairer, E.1
Norsett, S.P.2
Wanner, G.3
-
14
-
-
0041732883
-
Finite difference methods and spatial a posteriori error estimates for solving parabolic equations in three space dimensions on grids with irregular nodes
-
P.K. MOORE, Finite difference methods and spatial a posteriori error estimates for solving parabolic equations in three space dimensions on grids with irregular nodes, SIAM J. Numer. Anal., 36 (1999), pp. 1044-1064.
-
(1999)
SIAM J. Numer. Anal.
, vol.36
, pp. 1044-1064
-
-
Moore, P.K.1
-
15
-
-
0030081174
-
A comparison of preconditioners in the solution of parabolic systems in three space dimensions using DASPK and a high order finite element method
-
P.K. MOORE AND R.H. DILLON, A comparison of preconditioners in the solution of parabolic systems in three space dimensions using DASPK and a high order finite element method, Appl. Numer. Math., 20 (1996), pp. 117-128.
-
(1996)
Appl. Numer. Math.
, vol.20
, pp. 117-128
-
-
Moore, P.K.1
Dillon, R.H.2
-
16
-
-
0000646363
-
Comparison of adaptive methods for one-dimensional parabolic systems
-
P.K. MOORE, Comparison of adaptive methods for one-dimensional parabolic systems, Appl. Numer. Math., 16 (1995), pp. 471-488.
-
(1995)
Appl. Numer. Math.
, vol.16
, pp. 471-488
-
-
Moore, P.K.1
-
17
-
-
34250077980
-
High-order adaptive finite element-singly implicit RungeKutta methods for parabolic differential equations
-
P.K. MOORE AND J.E. FLAHERTY, High-order adaptive finite element-singly implicit RungeKutta methods for parabolic differential equations, BIT, 33 (1993), pp. 309-331.
-
(1993)
BIT
, vol.33
, pp. 309-331
-
-
Moore, P.K.1
Flaherty, J.E.2
-
18
-
-
84985408358
-
ILUT: A dual threshold incomplete LU factorization
-
Y. SAAD, ILUT: A dual threshold incomplete LU factorization, Numer. Linear Algebra Appl., 1 (1994), pp. 387-402.
-
(1994)
Numer. Linear Algebra Appl.
, vol.1
, pp. 387-402
-
-
Saad, Y.1
-
19
-
-
0000048673
-
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
-
Y. SAAD AND M.H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
-
(1986)
SIAM J. Sci. Statist. Comput.
, vol.7
, pp. 856-869
-
-
Saad, Y.1
Schultz, M.H.2
-
20
-
-
0039401067
-
Local refinement of 3D-meshes consisting of prisms and conforming closure
-
K.G. SIEBERT, Local refinement of 3D-meshes consisting of prisms and conforming closure, Impact Comput. Sci. Engrg., 5 (1993), pp. 271-284.
-
(1993)
Impact Comput. Sci. Engrg.
, vol.5
, pp. 271-284
-
-
Siebert, K.G.1
-
21
-
-
0030530686
-
An a posteriori error estimator for anisotropic refinement
-
K.G. SIEBERT, An a posteriori error estimator for anisotropic refinement, Numer. Math., 73 (1996), pp. 373-398.
-
(1996)
Numer. Math.
, vol.73
, pp. 373-398
-
-
Siebert, K.G.1
-
22
-
-
85037485180
-
A hierarchical partition model for adaptive finite element computation
-
submitted
-
J.D. TERESCO, M.W. BEALL, J.E. FLAHERTY, AND M.S. SHEPHARD, A hierarchical partition model for adaptive finite element computation, Comput. Methods Appl. Mech. Engrg., submitted.
-
Comput. Methods Appl. Mech. Engrg.
-
-
Teresco, J.D.1
Beall, M.W.2
Flaherty, J.E.3
Shephard, M.S.4
-
23
-
-
0008441150
-
Local-Mesh, Local-Order, Adaptive Finite Element Methods with a Posteriori Error Estimators for Elliptic Partial Differential Equations
-
Department of Computer Science, Yale University, New Haven, CT
-
A. WEISER, Local-Mesh, Local-Order, Adaptive Finite Element Methods with A Posteriori Error Estimators for Elliptic Partial Differential Equations, Tech. Report 213, Department of Computer Science, Yale University, New Haven, CT, 1981.
-
(1981)
Tech. Report
, vol.213
-
-
Weiser, A.1
|