-
2
-
-
0003035995
-
The local regularity of solutions of degenerate elliptic equations
-
E.B. FABES, C.E. KENIG, R.P. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.
-
(1982)
Comm. Partial Differential Equations
, vol.7
, pp. 77-116
-
-
Fabes, E.B.1
Kenig, C.E.2
Serapioni, R.P.3
-
4
-
-
0001077590
-
Weighted Sobolev-Poincaré inequalities for Grushin type operators
-
B. FRANCHI, C. GUTIÉRREZ, R.L. WHEEDEN, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604.
-
(1994)
Comm. Partial Differential Equations
, vol.19
, pp. 523-604
-
-
Franchi, B.1
Gutiérrez, C.2
Wheeden, R.L.3
-
5
-
-
0000541936
-
Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
-
B. FRANCHI, E. LANCONELLI, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 10 (1983), 523-541.
-
(1983)
Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4)
, vol.10
, pp. 523-541
-
-
Franchi, B.1
Lanconelli, E.2
-
6
-
-
0038943483
-
Representation formulas and weighted Poincaré inequalities for Hörmander vector fields
-
B. FRANCHI, G. LU, R.L. WHEEDEN, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Int. Mat. Res. Notices (1996), 1-14.
-
(1996)
Int. Mat. Res. Notices
, pp. 1-14
-
-
Franchi, B.1
Lu, G.2
Wheeden, R.L.3
-
7
-
-
0001101855
-
Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type
-
B. FRANCHI, C. PÉREZ, R.L. WHEEDEN, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal., 153 (1998), 108-146.
-
(1998)
J. Funct. Anal.
, vol.153
, pp. 108-146
-
-
Franchi, B.1
Pérez, C.2
Wheeden, R.L.3
-
8
-
-
0002805615
-
Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields
-
B. FRANCHI, R. SERAPIONI, F. SERRA CASSANO, Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., (7) 11-B (1997), 83-117.
-
(1997)
Boll. Un. Mat. Ital., (7)
, vol.11 B
, pp. 83-117
-
-
Franchi, B.1
Serapioni, R.2
Cassano, F.S.3
-
9
-
-
0032410775
-
Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces
-
N. GAROFALO, D.M. NHIEU, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97.
-
(1998)
J. Anal. Math.
, vol.74
, pp. 67-97
-
-
Garofalo, N.1
Nhieu, D.M.2
-
10
-
-
0030488404
-
Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces
-
N. GAROFALO, D.M. NHIEU, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144.
-
(1996)
Comm. Pure Appl. Math.
, vol.49
, pp. 1081-1144
-
-
Garofalo, N.1
Nhieu, D.M.2
-
11
-
-
0001587943
-
Sobolev spaces on an arbitrary metric space
-
P. HAJIASZ, Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996), 403-415.
-
(1996)
Potential Analysis
, vol.5
, pp. 403-415
-
-
Hajiasz, P.1
-
12
-
-
0009446695
-
Geometric approach to Sobolev spaces and badly degenerated elliptic equations
-
The Proceedings of Banach Center Minisemester: Nonlinear Analysis and Applications, (N. Kenmochi, M. Niezgódka, P. Strzelecki, eds.)
-
P. HAJIASZ, Geometric approach to Sobolev spaces and badly degenerated elliptic equations, The Proceedings of Banach Center Minisemester: Nonlinear Analysis and Applications, (N. Kenmochi, M. Niezgódka, P. Strzelecki, eds.) GAKUTO International Series; Mathematical Sciences and Applications, vol. 7 (1995), 141-168.
-
(1995)
GAKUTO International Series; Mathematical Sciences and Applications
, vol.7
, pp. 141-168
-
-
Hajiasz, P.1
-
15
-
-
21344469429
-
Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type
-
J. HEINONEN, P. KOSKELA, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand., 77 (1995), 251-271.
-
(1995)
Math. Scand.
, vol.77
, pp. 251-271
-
-
Heinonen, J.1
Koskela, P.2
-
16
-
-
0002048617
-
Quasiconformal maps on metric spaces with controlled geometry
-
J. HEINONEN, P. KOSKELA, Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61.
-
(1998)
Acta Math.
, vol.181
, pp. 1-61
-
-
Heinonen, J.1
Koskela, P.2
-
17
-
-
84972555264
-
The Poincaré inequality for vector fields satisfying Hörmander's condition
-
D. JERISON, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523.
-
(1986)
Duke Math. J.
, vol.53
, pp. 503-523
-
-
Jerison, D.1
-
18
-
-
84861452112
-
Smooth approximation in weighted Sobolev spaces
-
T. KILPELÄINEN, Smooth approximation in weighted Sobolev spaces, Comment. Math. Univ. Carolinae, 38 (1997), 29-35.
-
(1997)
Comment. Math. Univ. Carolinae
, vol.38
, pp. 29-35
-
-
Kilpeläinen, T.1
-
19
-
-
0002245026
-
Quasiconformal mappings and Sobolev spaces
-
P. KOSKELA, P. MACMANUS, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17.
-
(1998)
Studia Math.
, vol.131
, pp. 1-17
-
-
Koskela, P.1
Macmanus, P.2
-
20
-
-
0000157670
-
The sharp Poincaré inequality for free vector fields: An endpoint result
-
G. LU, The sharp Poincaré inequality for free vector fields: An endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466.
-
(1994)
Rev. Mat. Iberoamericana
, vol.10
, pp. 453-466
-
-
Lu, G.1
-
21
-
-
0041862120
-
Balls and metrics defined by vector fields I: Basic properties
-
A. NAGEL, E.M. STEIN and S. WAINGER, Balls and metrics defined by vector fields I: Basic properties, Acta Math., 155 (1985), 103-147.
-
(1985)
Acta Math.
, vol.155
, pp. 103-147
-
-
Nagel, A.1
Stein, E.M.2
Wainger, S.3
-
22
-
-
0001010413
-
Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincaré inequalities
-
S. SEMMES, Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.), 2 (1996), 155-295.
-
(1996)
Selecta Math. (N.S.)
, vol.2
, pp. 155-295
-
-
Semmes, S.1
|