메뉴 건너뛰기




Volumn 51, Issue 4, 1999, Pages 555-583

Existence and continuous dependence of mild solutions to semilinear functional differential equations in banach spaces

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033276057     PISSN: 00408735     EISSN: None     Source Type: Journal    
DOI: 10.2748/tmj/1178224719     Document Type: Article
Times cited : (5)

References (25)
  • 3
    • 0002513583 scopus 로고
    • Phase spaces for retarded equation with infinite delay
    • J. K. Hale and J. Kato, Phase spaces for retarded equation with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
    • (1978) Funkcial. Ekvac , vol.21 , pp. 11-41
    • Hale, J.K.1    Kato, J.2
  • 4
    • 0003287113 scopus 로고
    • Functional Differential Equations with Infinite Delay
    • Springer-Verlag
    • Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Math. 1473, Springer-Verlag, 1991.
    • (1991) Lecture Notes in Math , pp. 1473
    • Hino, Y.1    Murakami, S.2    Naito, T.3
  • 5
    • 0011901601 scopus 로고
    • Theorems of Ascoli type involving measures of noncompactness
    • H. P. Heinz, Theorems of Ascoli type involving measures of noncompactness, Nonlinear Anal. 5 (1981), 277-286.
    • (1981) Nonlinear Anal , vol.5 , pp. 277-286
    • Heinz, H.P.1
  • 6
    • 0000925696 scopus 로고
    • On the behavior of measures of noncompactness with respect to differentiation and integration of vector-valued function
    • H. P. Heinz, On the behavior of measures of noncompactness with respect to differentiation and integration of vector-valued function, Nonlinear Anal. 7 (1983), 1351-1371.
    • (1983) Nonlinear Anal , vol.7 , pp. 1351-1371
    • Heinz, H.P.1
  • 7
    • 0000748245 scopus 로고
    • Periodic solutions of quasi-linear partial functional differential equations with unbounded delay
    • H. R. Henriquez, Periodic solutions of quasi-linear partial functional differential equations with unbounded delay, Funkcial. Ekvac. 37 (1994), 329-344.
    • (1994) Funkcial. Ekvac , vol.37 , pp. 329-344
    • Henriquez, H.R.1
  • 8
    • 84972581134 scopus 로고
    • Global existence of mild solutions to semilinear differential equations in Banach spaces
    • T. Iwamiya, Global existence of mild solutions to semilinear differential equations in Banach spaces, Hiroshima Math. J. 16 (1986), 499-530.
    • (1986) Hiroshima Math. J , vol.16 , pp. 499-530
    • Iwamiya, T.1
  • 9
    • 0040043276 scopus 로고
    • On differential equations with unbounded operators in Banach spaces
    • M. A. Krasnoselskii, S. G. Krein and P. E. Sobolevskii, On differential equations with unbounded operators in Banach spaces, Dokl. Akad. Nauk SSSR 111 (1956), 19-22.
    • (1956) Dokl. Akad. Nauk SSSR , vol.111 , pp. 19-22
    • Krasnoselskii, M.A.1    Krein, S.G.2    Sobolevskii, P.E.3
  • 10
    • 84923298683 scopus 로고
    • Nonlinear Differential Equations in Abstract Spaces, International Series in Nonlinear Mathematics Theory
    • Pergamon Press, Oxford-New York
    • V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, International Series in Nonlinear Mathematics Theory, Methods and Applications 2, Pergamon Press, Oxford-New York, 1981.
    • (1981) Methods and Applications , vol.2
    • Lakshmikantham, V.1    Leela, S.2
  • 12
    • 0001506862 scopus 로고
    • A generalization of the Ascoli theorem and an application to functional differential equations
    • R. D. Nussbaum, A generalization of the Ascoli theorem and an application to functional differential equations, J. Math. Anal. Appl. 35 (1971), 600-610.
    • (1971) J. Math. Anal. Appl , vol.35 , pp. 600-610
    • Nussbaum, R.D.1
  • 13
    • 0001571018 scopus 로고
    • On the Cauchy problem for ordinary differential equations in Banach spaces
    • H. Mõnch and G. F. Harten, On the Cauchy problem for ordinary differential equations in Banach spaces, Arch. Math. 39 (1982), 153-160.
    • (1982) Arch. Math , vol.39 , pp. 153-160
    • Mõnch, H.1    Harten, G.F.2
  • 15
    • 34250281436 scopus 로고
    • Existence and continuous dependence for functional differential equations with infinite delay
    • K. Schumacher, Existence and continuous dependence for functional differential equations with infinite delay, Arch. Rational Mech. Anal. 7 (1978), 315-334.
    • (1978) Arch. Rational Mech. Anal , vol.7 , pp. 315-334
    • Schumacher, K.1
  • 16
    • 0009907153 scopus 로고
    • Remarks on semilinear partial functional differential equations with infinite delay
    • K. Schumacher, Remarks on semilinear partial functional differential equations with infinite delay, J. Math. Anal. Appl. 80 (1981), 261-290.
    • (1981) J. Math. Anal. Appl , vol.80 , pp. 261-290
    • Schumacher, K.1
  • 17
    • 0002914807 scopus 로고
    • An existence theorem of functional differential equations with infinite delay in a Banach space
    • J. S. Shin, An existence theorem of functional differential equations with infinite delay in a Banach space, Funkcial. Ekvac. 30 (1987), 19-29.
    • (1987) Funkcial. Ekvac , vol.30 , pp. 19-29
    • Shin, J.S.1
  • 18
    • 0039451094 scopus 로고
    • On the uniqueness of solutions for functional differential equations with infinite delay
    • J. S. Shin, On the uniqueness of solutions for functional differential equations with infinite delay, Funkcial. Ekvac. 30 (1987), 225-236.
    • (1987) Funkcial. , vol.30 , pp. 225-236
    • Shin, J.S.1
  • 19
    • 38249024554 scopus 로고
    • Existence of solutions and Kamke’s theorem for functional differential equations in Banach spaces
    • J. S. Shin, Existence of solutions and Kamke’s theorem for functional differential equations in Banach spaces, J. Differential Equations 81 (1989), 294-312.
    • (1989) J. Differential Equations , vol.81 , pp. 294-312
    • Shin, J.S.1
  • 20
    • 0040043280 scopus 로고
    • Kneser type theorems for functional differential equations in a Banach space
    • J. S. Shin, Kneser type theorems for functional differential equations in a Banach space, Funkcial. Ekavc. 35 (1992), 451-466.
    • (1992) Funkcial. Ekavc , vol.35 , pp. 451-466
    • Shin, J.S.1
  • 21
    • 0040043277 scopus 로고
    • Uniqueness of mild solutions to semilinear functional differential equations in Banach spaces
    • Singapore, Funct. Differ. Equ
    • J. S. Shin, Uniqueness of mild solutions to semilinear functional differential equations in Banach spaces, Proc. International Symp., World Scientific, Singapore, Funct. Differ. Equ. (1991), 334-338.
    • (1991) Proc. International Symp., World Scientific , pp. 334-338
    • Shin, J.S.1
  • 22
    • 0000442285 scopus 로고
    • Comparison theorems and uniqueness of mild solutions to semilinear functional differential equations in Banach spaces
    • J. S. Shin, Comparison theorems and uniqueness of mild solutions to semilinear functional differential equations in Banach spaces, Nonlinear Anal. 23 (1994), 825-847.
    • (1994) Nonlinear Anal , vol.23 , pp. 825-847
    • Shin, J.S.1
  • 23
    • 0033541221 scopus 로고    scopus 로고
    • Semi-Fredholm operators and periodic solutions for linear functional differential equations in Banach spaces
    • J. S. Shin and T. Naito, Semi-Fredholm operators and periodic solutions for linear functional differential equations in Banach spaces, J. Differential Equations 153 (1999), 407-441.
    • (1999) J. Differential Equations , vol.153 , pp. 407-441
    • Shin, J.S.1    Naito, T.2
  • 24
    • 84968492827 scopus 로고
    • Existence and stability for partial functional differential equations
    • C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418.
    • (1974) Trans. Amer. Math. Soc , vol.200 , pp. 395-418
    • Travis, C.C.1    Webb, G.F.2
  • 25
    • 0003842823 scopus 로고
    • Stability Theory by Liapunove’s Second Method
    • The Mathematical Society of Japan, Tokyo
    • T. Yoshizawa, Stability Theory by Liapunove’s Second Method, Publications of the Mathematical Society of Japan, No. 9, The Mathematical Society of Japan, Tokyo, 1966.
    • (1966) Publications of the Mathematical Society of Japan , vol.9
    • Yoshizawa, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.