-
1
-
-
33744769996
-
Deformation theory and quantization
-
F. BAYEN, M. FLATO, C. FRONSDAL, A. LICHNEROWICZ and D. STERNHEIMER, Deformation theory and quantization, Ann. Phys. (N.Y.), 111 (1978), 61-151.
-
(1978)
Ann. Phys. (N.y.)
, vol.111
, pp. 61-151
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
2
-
-
84927988871
-
Quantization
-
F. A. BEREZIN, Quantization, Math. USSR Izvestija, 8-5 (1974), 1109-1165.
-
(1974)
Math. USSR Izvestija
, vol.8
, Issue.5
, pp. 1109-1165
-
-
Berezin, F.A.1
-
3
-
-
84927987695
-
Quantization in complex symmetric spaces
-
F. A. BEREZIN, Quantization in complex symmetric spaces, Math. USSR Izvestija, 9-2 (1976), 341-379.
-
(1976)
Math. USSR Izvestija
, vol.9
, Issue.2
, pp. 341-379
-
-
Berezin, F.A.1
-
4
-
-
0004058055
-
-
Springer-Verlag, Berlin-Heidelberg
-
A. L. BESSE, Einstein Manifolds, Springer-Verlag, Berlin-Heidelberg, 1987.
-
(1987)
Einstein Manifolds
-
-
Besse, A.L.1
-
6
-
-
0002919831
-
Automorphic pseudodifferential operators, Algebraic aspects of integrable systems, 17-47
-
Birkhäuser Boston, Boston, MA
-
P. COHEN, YU. MANIN and D. ZAGIER, Automorphic pseudodifferential operators, Algebraic aspects of integrable systems, 17-47, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997.
-
(1997)
Progr. Nonlinear Differential Equations Appl.
, vol.26
-
-
Cohen, P.1
Manin, Y.U.2
Zagier, D.3
-
7
-
-
0000734746
-
Formal deformation of the Poisson Lie algebra of a symplectic manifold and star-products
-
Kluver Acad. Pub., Dordrecht, and references therein
-
M. De WILDE and P. B. A. LECOMTE, Formal deformation of the Poisson Lie algebra of a symplectic manifold and star-products, in Deformation Theory of Algebras and Structures And Applications, Kluver Acad. Pub., Dordrecht, 1988, and references therein.
-
(1988)
Deformation Theory of Algebras and Structures And Applications
-
-
De Wilde, M.1
Lecomte, P.B.A.2
-
8
-
-
0031586649
-
Space of second order linear differential operators as a module over the Lie algebra of vector fields
-
C. DUVAL and V. OVSIENKO, Space of second order linear differential operators as a module over the Lie algebra of vector fields, Advances in Math., 132-2 (1997), 316-333.
-
(1997)
Advances in Math.
, vol.132
, Issue.2
, pp. 316-333
-
-
Duval, C.1
Ovsienko, V.2
-
12
-
-
0001579660
-
Space of linear differential operators on the real line as a module over the Lie algebra of vector fields
-
H. GARGOUBI and V. OVSIENKO, Space of linear differential operators on the real line as a module over the Lie algebra of vector fields, Int. Res. Math. Notes, 1996, No. 5, 235-251.
-
(1996)
Int. Res. Math. Notes
, Issue.5
, pp. 235-251
-
-
Gargoubi, H.1
Ovsienko, V.2
-
13
-
-
84963062938
-
Lie algebras of vector fields in the real plane
-
A. GONZÁLEZ-LÓPEZ, N. KAMRAN and P. J. OLVER, Lie algebras of vector fields in the real plane, Proc. London Math. Soc., 64 (1992), 339-368.
-
(1992)
Proc. London Math. Soc.
, vol.64
, pp. 339-368
-
-
González-López, A.1
Kamran, N.2
Olver, P.J.3
-
15
-
-
0038943251
-
Geometric quantization, in encyclopedia of
-
Springer-Verlag
-
A. A. KIRILLOV, Geometric Quantization, in Encyclopedia of Math. Sci., Vol. 4, Springer-Verlag, 1990.
-
(1990)
Math. Sci.
, vol.4
-
-
Kirillov, A.A.1
-
17
-
-
0002535842
-
Quantization and unitary representations
-
Springer-Verlag
-
B. KOSTANT, Quantization and Unitary Representations, in Lecture Notes in Math., Springer-Verlag, Vol. 170, 1970.
-
(1970)
Lecture Notes in Math.
, vol.170
-
-
Kostant, B.1
-
18
-
-
0000665863
-
Symplectic spinors
-
London, Acad. Press
-
B. KOSTANT, Symplectic Spinors, in Symposia Math., Vol. 14, London, Acad. Press, 1974.
-
(1974)
Symposia Math.
, vol.14
-
-
Kostant, B.1
-
20
-
-
0033074527
-
Classification projective des espaces d'opérateurs différentiels agissant sur les densités
-
Ser. 1
-
P. B. A. LECOMTE, Classification projective des espaces d'opérateurs différentiels agissant sur les densités, C.R.A.S., 328, Ser. 1 (1999).
-
(1999)
C.R.A.S.
, vol.328
-
-
Lecomte, P.B.A.1
-
21
-
-
0030524407
-
Comparison of some modules of the Lie algebra of vector fields
-
P. B. A. LECOMTE, P. MATHONET and E. TOUSSET, Comparison of some modules of the Lie algebra of vector fields, Indag. Math., N.S., 7-4 (1996), 461-471.
-
(1996)
Indag. Math., N.S.
, vol.7
, Issue.4
, pp. 461-471
-
-
Lecomte, P.B.A.1
Mathonet, P.2
Tousset, E.3
-
23
-
-
0038943246
-
Intertwining operators between some spaces of differential operators on a manifold
-
to appear
-
P. MATHONET, Intertwining operators between some spaces of differential operators on a manifold, Comm. in Algebra (1999), to appear.
-
(1999)
Comm. in Algebra
-
-
Mathonet, P.1
-
24
-
-
0039039947
-
-
Cambridge University Press
-
R. PENROSE and W. RINDLER, Spinors and space-time, Vol. 2, Spinor and twistor methods in space-time geometry, Cambridge University Press, 1986.
-
(1986)
Spinors and Space-time, Vol. 2, Spinor and Twistor Methods in Space-time Geometry
, vol.2
-
-
Penrose, R.1
Rindler, W.2
-
25
-
-
21844518385
-
A class of graded Lie algebras of vector fields and first order differential operators
-
G. POST, A class of graded Lie algebras of vector fields and first order differential operators, J. Math. Phys., 35-12 (1994), 6838-6856.
-
(1994)
J. Math. Phys.
, vol.35
, Issue.12
, pp. 6838-6856
-
-
Post, G.1
-
26
-
-
0003570488
-
Structure des systèmes dynamiques, dunod, 1970, © 1969
-
Birkhäuser
-
J.-M. SOURIAU, Structure des systèmes dynamiques, Dunod, 1970, © 1969, Structure of Dynamical Systems. A Symplectic View of Physics, Birkhäuser, 1997.
-
(1997)
Structure of Dynamical Systems. A Symplectic View of Physics
-
-
Souriau, J.-M.1
|