-
2
-
-
84972562263
-
A Morse index theorem for null geodesics
-
J. Beem and P. Ehrlich, "A Morse Index Theorem for Null Geodesics," Duke Math. J. 46, 561-569 (1979).
-
(1979)
Duke Math. J.
, vol.46
, pp. 561-569
-
-
Beem, J.1
Ehrlich, P.2
-
3
-
-
0009159054
-
The index theorem in Riemannian geometry
-
W. Ambrose, "The Index Theorem in Riemannian Geometry," Ann. Math. 73(1), 49-86 (1961).
-
(1961)
Ann. Math.
, vol.73
, Issue.1
, pp. 49-86
-
-
Ambrose, W.1
-
4
-
-
84972525366
-
The Morse index theorem in the case of two variable endpoints
-
J. Bolton, "The Morse Index Theorem in the case of Two Variable Endpoints," J. Diff. Geom. 12, 567-581 (1977).
-
(1977)
J. Diff. Geom.
, vol.12
, pp. 567-581
-
-
Bolton, J.1
-
5
-
-
0000833552
-
The Morse index theorem where the ends are submanifolds
-
D. Kalish, "The Morse Index Theorem where the Ends are Submanifolds," Trans. Am. Math. Soc. 308(1), 341-348 (1988).
-
(1988)
Trans. Am. Math. Soc.
, vol.308
, Issue.1
, pp. 341-348
-
-
Kalish, D.1
-
6
-
-
0009291202
-
Correction to the index theorem in Riemannian geometry by W. Ambrose
-
T. Takahashi, "Correction to The Index Theorem In Riemannian Geometry by W. Ambrose" Ann. Math. 80, 538-541 (1964).
-
(1964)
Ann. Math.
, vol.80
, pp. 538-541
-
-
Takahashi, T.1
-
7
-
-
84966233427
-
The Morse index theorem in the degenerate endmanifold case
-
N. Hingston and D. Kalish, "The Morse Index Theorem in the Degenerate Endmanifold Case," Proc. Am. Math. Soc. 118(2), 663-668 (1993).
-
(1993)
Proc. Am. Math. Soc.
, vol.118
, Issue.2
, pp. 663-668
-
-
Hingston, N.1
Kalish, D.2
-
8
-
-
0001509104
-
A focal index theorem for null geodesics
-
P. E. Ehrlich and S. Kim, "A Focal Index Theorem for Null Geodesics," J. Geom. Phys. 6(4), 657-670 (1989).
-
(1989)
J. Geom. Phys.
, vol.6
, Issue.4
, pp. 657-670
-
-
Ehrlich, P.E.1
Kim, S.2
-
9
-
-
84972552869
-
Conjugate points on spacelike geodesics or pseudo-self-adjoint Morse-Sturm-Liouville systems
-
A. D. Helfer, "Conjugate Points on Spacelike Geodesics or Pseudo-Self-Adjoint Morse-Sturm-Liouville Systems," Pac. J. Math. 164(2), 321-340 (1994).
-
(1994)
Pac. J. Math.
, vol.164
, Issue.2
, pp. 321-340
-
-
Helfer, A.D.1
-
10
-
-
0002250880
-
A generalized Sturm theorem
-
H. M. Edwards, "A Generalized Sturm Theorem," Ann. Math. 80, 22-57 (1964).
-
(1964)
Ann. Math.
, vol.80
, pp. 22-57
-
-
Edwards, H.M.1
-
11
-
-
0000895076
-
On the Morse index theorem
-
S. Smale, "On the Morse Index Theorem," J. Math. Mech. 14, 1049-1056 (1965).
-
(1965)
J. Math. Mech.
, vol.14
, pp. 1049-1056
-
-
Smale, S.1
-
12
-
-
0004190360
-
-
Princeton U. P., Princeton
-
J. Milnor, Morse Theory (Princeton U. P., Princeton, 1969).
-
(1969)
Morse Theory
-
-
Milnor, J.1
-
14
-
-
0001210884
-
A triangle comparison theorem for Lorentz manifolds
-
S. G. Harris, "A Triangle Comparison Theorem for Lorentz Manifolds," Indiana Univ. Math. J. 31(3), 289-308 (1982).
-
(1982)
Indiana Univ. Math. J.
, vol.31
, Issue.3
, pp. 289-308
-
-
Harris, S.G.1
-
16
-
-
0032164167
-
Some properties of the spectral flow in Semiriemannian geometry
-
V. Benci, F. Giannoni, and A. Masiello, "Some Properties of the Spectral Flow in Semiriemannian Geometry," J. Geom. Phys. 27, 267-280 (1998).
-
(1998)
J. Geom. Phys.
, vol.27
, pp. 267-280
-
-
Benci, V.1
Giannoni, F.2
Masiello, A.3
-
17
-
-
0000156324
-
An intrinsic approach to the geodesical connectedness of stationary Lorentzian manifolds
-
F. Giannoni and P. Piccione, "An Intrinsic Approach to the Geodesical Connectedness of Stationary Lorentzian Manifolds," Commun. An. Geom. 7(1), 157-197 (1999).
-
(1999)
Commun. An. Geom.
, vol.7
, Issue.1
, pp. 157-197
-
-
Giannoni, F.1
Piccione, P.2
-
18
-
-
0003323305
-
Variational methods in Lorentzian geometry
-
Longman, London
-
A. Masiello, Variational Methods in Lorentzian Geometry, Pitman Research Notes in Mathematics Vol. 309 (Longman, London 1994).
-
(1994)
Pitman Research Notes in Mathematics
, vol.309
-
-
Masiello, A.1
|