-
1
-
-
0004140926
-
-
Springer, Berlin
-
H. Risken The Fokker-Planck equation, Springer, Berlin (1984); C. Soize The Fokker-Planck equation for Stochastic Dynamical Systems and its explicit steady state solutions, World Scientific, Singapore (1994).
-
(1984)
The Fokker-Planck Equation
-
-
Risken, H.1
-
5
-
-
0003542775
-
-
Wiley, New York
-
The litterature is extensive, see e.g. Ref.3 and P. Résibois and M. de Leener, Classical kinetic theory of fluids, Wiley, New York(1977); R. Kubo, M. Toda and N. Hashitsume, Statistical Physics, Vol II, Springer Berlin (1985).
-
(1977)
Classical Kinetic Theory of Fluids
-
-
Résibois, P.1
De Leener, M.2
-
6
-
-
0004138120
-
-
Springer Berlin
-
The litterature is extensive, see e.g. Ref.3 and P. Résibois and M. de Leener, Classical kinetic theory of fluids, Wiley, New York(1977); R. Kubo, M. Toda and N. Hashitsume, Statistical Physics, Vol II, Springer Berlin (1985).
-
(1985)
Statistical Physics
, vol.2
-
-
Kubo, R.1
Toda, M.2
Hashitsume, N.3
-
10
-
-
0002335432
-
-
E.B. Davies, Comm. Math. Phys. 39, 91 (1974); E.B. Davies, Math. Annalen 219, 147 (1976);
-
(1974)
Comm. Math. Phys.
, vol.39
, pp. 91
-
-
Davies, E.B.1
-
11
-
-
0005184869
-
-
E.B. Davies, Comm. Math. Phys. 39, 91 (1974); E.B. Davies, Math. Annalen 219, 147 (1976);
-
(1976)
Math. Annalen
, vol.219
, pp. 147
-
-
Davies, E.B.1
-
12
-
-
0001078990
-
-
section 2 and p.239 eq.(3.5)
-
e.g N.G. van Kampen and I. Oppenheim, Physica A138, 231 (1986), section 2 and p.239 eq.(3.5); V. Rudyak and I. Ershov, Physica A219, 351 (1995), eq.(15); J. Piasecki and G. Szamel, Physica A143, 114 (1987), section 3 eq.(29); S.A. Aldeman, J. Chem. Phys. 64, 124 (1976), eq(3.19); M. Tokuyama, Physica A169, 147 (1990), eq.(4.9a); Ref. 3, eq(18.1.18); P. Grigolini, in Noise in nonlinear dynamical systems vol.I, F. Moss and P.V.E. McClintock (eds.), (1988), ch.5, eq(58); T.W. Marshall, Physica A 103, 172 (1980), section 3 and eq(3.15).
-
(1986)
Physica
, vol.A138
, pp. 231
-
-
Van Kampen, N.G.1
Oppenheim, I.2
-
13
-
-
0009177930
-
-
eq.(15)
-
e.g N.G. van Kampen and I. Oppenheim, Physica A138, 231 (1986), section 2 and p.239 eq.(3.5); V. Rudyak and I. Ershov, Physica A219, 351 (1995), eq.(15); J. Piasecki and G. Szamel, Physica A143, 114 (1987), section 3 eq.(29); S.A. Aldeman, J. Chem. Phys. 64, 124 (1976), eq(3.19); M. Tokuyama, Physica A169, 147 (1990), eq.(4.9a); Ref. 3, eq(18.1.18); P. Grigolini, in Noise in nonlinear dynamical systems vol.I, F. Moss and P.V.E. McClintock (eds.), (1988), ch.5, eq(58); T.W. Marshall, Physica A 103, 172 (1980), section 3 and eq(3.15).
-
(1995)
Physica
, vol.A219
, pp. 351
-
-
Rudyak, V.1
Ershov, I.2
-
14
-
-
0009176893
-
-
section 3 eq.(29)
-
e.g N.G. van Kampen and I. Oppenheim, Physica A138, 231 (1986), section 2 and p.239 eq.(3.5); V. Rudyak and I. Ershov, Physica A219, 351 (1995), eq.(15); J. Piasecki and G. Szamel, Physica A143, 114 (1987), section 3 eq.(29); S.A. Aldeman, J. Chem. Phys. 64, 124 (1976), eq(3.19); M. Tokuyama, Physica A169, 147 (1990), eq.(4.9a); Ref. 3, eq(18.1.18); P. Grigolini, in Noise in nonlinear dynamical systems vol.I, F. Moss and P.V.E. McClintock (eds.), (1988), ch.5, eq(58); T.W. Marshall, Physica A 103, 172 (1980), section 3 and eq(3.15).
-
(1987)
Physica
, vol.A143
, pp. 114
-
-
Piasecki, J.1
Szamel, G.2
-
15
-
-
0001078990
-
-
eq(3.19)
-
e.g N.G. van Kampen and I. Oppenheim, Physica A138, 231 (1986), section 2 and p.239 eq.(3.5); V. Rudyak and I. Ershov, Physica A219, 351 (1995), eq.(15); J. Piasecki and G. Szamel, Physica A143, 114 (1987), section 3 eq.(29); S.A. Aldeman, J. Chem. Phys. 64, 124 (1976), eq(3.19); M. Tokuyama, Physica A169, 147 (1990), eq.(4.9a); Ref. 3, eq(18.1.18); P. Grigolini, in Noise in nonlinear dynamical systems vol.I, F. Moss and P.V.E. McClintock (eds.), (1988), ch.5, eq(58); T.W. Marshall, Physica A 103, 172 (1980), section 3 and eq(3.15).
-
(1976)
J. Chem. Phys.
, vol.64
, pp. 124
-
-
Aldeman, S.A.1
-
16
-
-
0009099740
-
-
eq.(4.9a)
-
e.g N.G. van Kampen and I. Oppenheim, Physica A138, 231 (1986), section 2 and p.239 eq.(3.5); V. Rudyak and I. Ershov, Physica A219, 351 (1995), eq.(15); J. Piasecki and G. Szamel, Physica A143, 114 (1987), section 3 eq.(29); S.A. Aldeman, J. Chem. Phys. 64, 124 (1976), eq(3.19); M. Tokuyama, Physica A169, 147 (1990), eq.(4.9a); Ref. 3, eq(18.1.18); P. Grigolini, in Noise in nonlinear dynamical systems vol.I, F. Moss and P.V.E. McClintock (eds.), (1988), ch.5, eq(58); T.W. Marshall, Physica A 103, 172 (1980), section 3 and eq(3.15).
-
(1990)
Physica
, vol.A169
, pp. 147
-
-
Tokuyama, M.1
-
17
-
-
0001078990
-
-
F. Moss and P.V.E. McClintock (eds.), ch.5, eq(58)
-
e.g N.G. van Kampen and I. Oppenheim, Physica A138, 231 (1986), section 2 and p.239 eq.(3.5); V. Rudyak and I. Ershov, Physica A219, 351 (1995), eq.(15); J. Piasecki and G. Szamel, Physica A143, 114 (1987), section 3 eq.(29); S.A. Aldeman, J. Chem. Phys. 64, 124 (1976), eq(3.19); M. Tokuyama, Physica A169, 147 (1990), eq.(4.9a); Ref. 3, eq(18.1.18); P. Grigolini, in Noise in nonlinear dynamical systems vol.I, F. Moss and P.V.E. McClintock (eds.), (1988), ch.5, eq(58); T.W. Marshall, Physica A 103, 172 (1980), section 3 and eq(3.15).
-
(1988)
Noise in Nonlinear Dynamical Systems
, vol.1
-
-
Grigolini, P.1
-
18
-
-
84983846613
-
-
section 3 and eq(3.15)
-
e.g N.G. van Kampen and I. Oppenheim, Physica A138, 231 (1986), section 2 and p.239 eq.(3.5); V. Rudyak and I. Ershov, Physica A219, 351 (1995), eq.(15); J. Piasecki and G. Szamel, Physica A143, 114 (1987), section 3 eq.(29); S.A. Aldeman, J. Chem. Phys. 64, 124 (1976), eq(3.19); M. Tokuyama, Physica A169, 147 (1990), eq.(4.9a); Ref. 3, eq(18.1.18); P. Grigolini, in Noise in nonlinear dynamical systems vol.I, F. Moss and P.V.E. McClintock (eds.), (1988), ch.5, eq(58); T.W. Marshall, Physica A 103, 172 (1980), section 3 and eq(3.15).
-
(1980)
Physica A
, vol.103
, pp. 172
-
-
Marshall, T.W.1
-
20
-
-
3543009193
-
-
G. Lindblad, Comm. Math. Phys. 48, 119 (1976); V. Gorini, A. Kossakowski and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976); V. Gorini, A. Frigerio, M. Veri, A. Kossakowski and E.C.G. Sudarshan, Rep. Math. Physics 13, 149 (1978).
-
(1976)
Comm. Math. Phys.
, vol.48
, pp. 119
-
-
Lindblad, G.1
-
21
-
-
36749106315
-
-
G. Lindblad, Comm. Math. Phys. 48, 119 (1976); V. Gorini, A. Kossakowski and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976); V. Gorini, A. Frigerio, M. Veri, A. Kossakowski and E.C.G. Sudarshan, Rep. Math. Physics 13, 149 (1978).
-
(1976)
J. Math. Phys.
, vol.17
, pp. 821
-
-
Gorini, V.1
Kossakowski, A.2
Sudarshan, E.C.G.3
-
22
-
-
49349120482
-
-
G. Lindblad, Comm. Math. Phys. 48, 119 (1976); V. Gorini, A. Kossakowski and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976); V. Gorini, A. Frigerio, M. Veri, A. Kossakowski and E.C.G. Sudarshan, Rep. Math. Physics 13, 149 (1978).
-
(1978)
Rep. Math. Physics
, vol.13
, pp. 149
-
-
Gorini, V.1
Frigerio, A.2
Veri, M.3
Kossakowski, A.4
Sudarshan, E.C.G.5
-
25
-
-
0004116414
-
-
McGraw-Hill, London, chs. 6, 3, 2, 7
-
W. Rudin, Real and Complex analysis, McGraw-Hill, London (1970), chs. 6, 3, 2, 7.
-
(1970)
Real and Complex Analysis
-
-
Rudin, W.1
-
26
-
-
0004021335
-
-
Springer, Berlin, chs.IX, IV, II
-
K. Yosida, Functional analysis, Springer, Berlin (1971), chs.IX, IV, II.
-
(1971)
Functional Analysis
-
-
Yosida, K.1
-
27
-
-
0004188078
-
-
Springer, Berlin, ch.1
-
E.B. Dynkin, Markov Processes, Vol I, Springer, Berlin (1965), ch.1.
-
(1965)
Markov Processes
, vol.1
-
-
Dynkin, E.B.1
-
28
-
-
0003724773
-
-
Academic Press, London, chs. 1, 2, 7
-
E.B. Davies, One-parameter semigroups, Academic Press, London (1981), chs. 1, 2, 7.
-
(1981)
One-parameter Semigroups
-
-
Davies, E.B.1
-
29
-
-
0000776660
-
-
théorème V and section I.2
-
J-M. Bony, P. Courrège and P. Priouret, Ann. Inst. Fourier (Grenoble) 18 No2, 369 (1968), théorème V and section I.2.
-
(1968)
Ann. Inst. Fourier (Grenoble)
, vol.18
, Issue.2
, pp. 369
-
-
Bony, J.-M.1
Courrège, P.2
Priouret, P.3
-
30
-
-
0001321497
-
-
It contains Lemma A.2.1 specialized to the Kramers-Moyal expansion of the linear Boltzmann equation
-
R.F. Pawula, Phys. Rev. 162, 186 (1967). It contains Lemma A.2.1 specialized to the Kramers-Moyal expansion of the linear Boltzmann equation.
-
(1967)
Phys. Rev.
, vol.162
, pp. 186
-
-
Pawula, R.F.1
-
31
-
-
36749121954
-
-
Lemma A.2.1 is shown using a different definition of dissipativity, a priori stronger than (3.4)
-
J.V. Pulé and A. Verbeure, J. Math. Phys. 20, 2286 (1979). Lemma A.2.1 is shown using a different definition of dissipativity, a priori stronger than (3.4).
-
(1979)
J. Math. Phys.
, vol.20
, pp. 2286
-
-
Pulé, J.V.1
Verbeure, A.2
-
32
-
-
0003430259
-
-
Princeton University Press, Princeton; its theorem 5.3 outlines the derivation of (4.2) using (4.1)
-
E. Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton (1967); its theorem 5.3 outlines the derivation of (4.2) using (4.1).
-
(1967)
Dynamical Theories of Brownian Motion
-
-
Nelson, E.1
-
33
-
-
0001572038
-
-
Lemma 6.1
-
See Ref.18, théorèmes IX, IX', XIV; cf. Ref12, theorem 9.4.1 and K. Sato, T. Ueno, J. Math. Kyoto Univ. 4-3, 529 (1965), Lemma 6.1.
-
(1965)
J. Math. Kyoto Univ.
, vol.4
, Issue.3
, pp. 529
-
-
Sato, K.1
Ueno, T.2
-
34
-
-
0009175242
-
-
private communication
-
That this should follow by an explicit construction of a counter example (provided by Lemma A.2.1) has been pointed to one of us (C.T.) by E.B. Davies (private communication).
-
-
-
Davies, E.B.1
-
35
-
-
0009100286
-
-
note
-
ij is a nonegative - definite matrix function.
-
-
-
-
36
-
-
0009175769
-
-
note
-
a for some M > 0 and ∥ ∥ is the Euclidean norm.
-
-
-
-
37
-
-
0009256608
-
Local operators and Markov processes
-
Berlin, proof of theorem 3.3 in ch.I
-
The proof is contained in L. Stoica, Local operators and Markov processes, Springer Lecture Notes in Mathematics vol. 816, Berlin (1980), proof of theorem 3.3 in ch.I.
-
(1980)
Springer Lecture Notes in Mathematics
, vol.816
-
-
Stoica, L.1
-
38
-
-
84950296671
-
-
Wiley, New York, sections IV.2, IV.7
-
R. Courant and D. Hilbert, Methods of mathematical physics, Vol II, Wiley, New York (1962), sections IV.2, IV.7; J.R. Mika and J. Banasiak, Singularly perturbed evolution equations with applications to kinetic theory, World Scientific, Singapore 1995, section 3.7.
-
(1962)
Methods of Mathematical Physics
, vol.2
-
-
Courant, R.1
Hilbert, D.2
-
39
-
-
84950242370
-
-
World Scientific, Singapore, section 3.7
-
R. Courant and D. Hilbert, Methods of mathematical physics, Vol II, Wiley, New York (1962), sections IV.2, IV.7; J.R. Mika and J. Banasiak, Singularly perturbed evolution equations with applications to kinetic theory, World Scientific, Singapore 1995, section 3.7.
-
(1995)
Singularly Perturbed Evolution Equations with Applications to Kinetic Theory
-
-
Mika, J.R.1
Banasiak, J.2
-
40
-
-
0003744098
-
-
Hogy Nauky, Moskow (in Russian), theorem 1.8.2
-
O.A. Oleinik and E.B. Radkevich, Second order equations with nonegative characteristic form, Hogy Nauky, Moskow (1971), (in Russian), theorem 1.8.2 p.86.
-
(1971)
Second Order Equations with Nonegative Characteristic Form
, pp. 86
-
-
Oleinik, O.A.1
Radkevich, E.B.2
-
41
-
-
0002987250
-
-
theorem 1; Ref.12, theorem 9.5.1; Ref.18, théorème XIII
-
A.D. Venttsell, Theory of Probability and its applications, 4, 164 (1959), theorem 1; Ref.12, theorem 9.5.1; Ref.18, théorème XIII.
-
(1959)
Theory of Probability and Its Applications
, vol.4
, pp. 164
-
-
Venttsell, A.D.1
-
42
-
-
0002353077
-
On the existence of feller semigroups with boundary conditions
-
theorems 1, 2
-
Ref.12, theorems 10.1.1, 10.3; K. Taira, On the existence of Feller semigroups with boundary conditions, Memoirs of the AMS 99 No475 (1992), theorems 1, 2; cf. K. Sato et al. (Ref.22), theorem 5.2. For the construction of MS on compact manifolds see Ref.18, théorèmes XVI, XVI', XIX.
-
(1992)
Memoirs of the AMS
, vol.99
, Issue.475
-
-
Taira, K.1
-
43
-
-
0009242855
-
-
(Ref.22), theorem 5.2. For the construction of MS on compact manifolds see Ref.18, théorèmes XVI, XVI', XIX
-
Ref.12, theorems 10.1.1, 10.3; K. Taira, On the existence of Feller semigroups with boundary conditions, Memoirs of the AMS 99 No475 (1992), theorems 1, 2; cf. K. Sato et al. (Ref.22), theorem 5.2. For the construction of MS on compact manifolds see Ref.18, théorèmes XVI, XVI', XIX.
-
-
-
Sato, K.1
-
44
-
-
0004207439
-
-
Van Nostrand, New York, sections 36, 55
-
P.R. Halmos, Measure theory, Van Nostrand, New York (1950), sections 36, 55.
-
(1950)
Measure Theory
-
-
Halmos, P.R.1
-
45
-
-
0009176894
-
-
note
-
tA)dμ̃ for the observables A (see e.g. Ref.15 p.392), though this has no physical interpretation.
-
-
-
-
46
-
-
0009097724
-
-
note
-
X Φdv/N) ≤ (latin small letter esh) h ○ Φdv/N.
-
-
-
-
47
-
-
0009254478
-
-
note
-
→) on a set of measure zero we get the result.
-
-
-
-
48
-
-
0009101968
-
-
note
-
n) ≤ a < 1 its existence is ensured as well. However (3.11) is essential in the context of kinetic theory. Nevertheless, even in this case we do not know if this invariant measure is absolutely continuous with respect to the Lebesgue measure (cf.(5.4″)).
-
-
-
-
49
-
-
36749116284
-
-
theorem 1.2
-
P.M. Alberti and A. Uhlmann, J. Math. Phys. 22, 2345 (1981), theorem 1.2; P.M. Alberti and A. Uhlmann, Math. Nachrichten 97, 279 (1980), proposition 5.3.
-
(1981)
J. Math. Phys.
, vol.22
, pp. 2345
-
-
Alberti, P.M.1
Uhlmann, A.2
-
50
-
-
0009244060
-
-
proposition 5.3
-
P.M. Alberti and A. Uhlmann, J. Math. Phys. 22, 2345 (1981), theorem 1.2; P.M. Alberti and A. Uhlmann, Math. Nachrichten 97, 279 (1980), proposition 5.3.
-
(1980)
Math. Nachrichten
, vol.97
, pp. 279
-
-
Alberti, P.M.1
Uhlmann, A.2
-
51
-
-
0009178616
-
-
Springer, New York, sections 7.6, 7.7, and Ref.12, theorems 9.2.1-9.2.3
-
For detailed proofs see J. Lamberti, Stochastic Processes, Springer, New York (1977), sections 7.6, 7.7, and Ref.12, theorems 9.2.1-9.2.3.
-
(1977)
Stochastic Processes
-
-
Lamberti, J.1
-
53
-
-
0009104682
-
-
note
-
For the proof see Ref.18, théorème V in connection with théorème III and §§0.1.4, I.2.6, I.2.1, I.2.10.
-
-
-
-
54
-
-
0009177187
-
-
note
-
Its existence is implied by the paracompactness of X.
-
-
-
|