메뉴 건너뛰기




Volumn 95, Issue 1-2, 1999, Pages 1-22

On the stability of the O(N)-invariant and the cubic-invariant three-dimensional N-component renormalization-group fixed points in the hierarchical approximation

Author keywords

Cubic invariance; Fixed points; Renormalization group

Indexed keywords


EID: 0033246847     PISSN: 00224715     EISSN: None     Source Type: Journal    
DOI: 10.1023/a:1004568925547     Document Type: Article
Times cited : (2)

References (19)
  • 1
    • 0001049460 scopus 로고
    • Critical behavior of anisotropic cubic systems
    • A. Aharony, Critical Behavior of Anisotropic Cubic Systems, Phys. Rev. B 8:4270 (1973).
    • (1973) Phys. Rev. B , vol.8 , pp. 4270
    • Aharony, A.1
  • 3
    • 0032557364 scopus 로고    scopus 로고
    • The stability of the O(N) invariant fixed point in three dimensions, cond-mat/9711080
    • M. Caselle and M. Hasenbusch, The stability of the O(N) invariant fixed point in three dimensions, cond-mat/9711080, J. Phys. A (Mathematical and General) 31(20):4603 (1998).
    • (1998) J. Phys. A (Mathematical and General) , vol.31 , Issue.20 , pp. 4603
    • Caselle, M.1    Hasenbusch, M.2
  • 4
    • 0001526802 scopus 로고
    • Non-Gaussian fixed points of the block spin transformation. Hierarchical model approximation
    • K. Gawedzki and A. Kupiainen, Non-Gaussian fixed points of the block spin transformation. Hierarchical model approximation, Commun. Math. Phys. 89:191 (1983).
    • (1983) Commun. Math. Phys. , vol.89 , pp. 191
    • Gawedzki, K.1    Kupiainen, A.2
  • 5
    • 0001662958 scopus 로고
    • Continuum limit of the hierarchical O(N) non-linear σ-model
    • K. Gawedzki and A. Kupiainen, Continuum limit of the hierarchical O(N) non-linear σ-model, Commun. Math. Phys. 106:533 (1986).
    • (1986) Commun. Math. Phys. , vol.106 , pp. 533
    • Gawedzki, K.1    Kupiainen, A.2
  • 7
    • 29244446181 scopus 로고
    • 4 theory with cubic anisotropy, hep-th/9508172
    • 4 theory with cubic anisotropy, hep-th/9508172, Phys. Rev. D 52:5926 (1995).
    • (1995) Phys. Rev. D , vol.52 , pp. 5926
    • Kleinert, H.1    Thoms, S.2
  • 10
    • 0000414413 scopus 로고
    • A non-gaussian renormalization group fixed point for hierarchical scalar lattice field theories
    • H. Koch and P. Wittwer, A non-Gaussian renormalization group fixed point for hierarchical scalar lattice field theories, Commun. Math. Phys. 106:495 (1986).
    • (1986) Commun. Math. Phys. , vol.106 , pp. 495
    • Koch, H.1    Wittwer, P.2
  • 11
    • 0039635531 scopus 로고
    • On the renormalization group transformation for scalar hierarchical models
    • H. Koch and P. Wittwer, On the renormalization group transformation for scalar hierarchical models, Commun. Math. Phys. 138:537 (1991).
    • (1991) Commun. Math. Phys. , vol.138 , pp. 537
    • Koch, H.1    Wittwer, P.2
  • 12
    • 0002849007 scopus 로고    scopus 로고
    • Five-loop square root ε-expansions for random Ising model and marginal spin dimensionality for cubic systems
    • B. N. Shalaev, S. A. Antonenko, and A. I. Sokolov, Five-loop square root ε-expansions for random Ising model and marginal spin dimensionality for cubic systems, Phys. Lett. A 230:105 (1997).
    • (1997) Phys. Lett. A , vol.230 , pp. 105
    • Shalaev, B.N.1    Antonenko, S.A.2    Sokolov, A.I.3
  • 13
    • 0009160797 scopus 로고
    • Cubic-crystal critical behaviour in structural phase transitions
    • I. O. Maier and A. I. Sokolov, Cubic-crystal critical behaviour in structural phase transitions. Bulletin of the Academy of Sciences of the USSR, Physical Series 51(12):20 (1987). Translation of: Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 51(12):2103 (1987).
    • (1987) Bulletin of the Academy of Sciences of the USSR, Physical Series , vol.51 , Issue.12 , pp. 20
    • Maier, I.O.1    Sokolov, A.I.2
  • 14
    • 0000983140 scopus 로고
    • I. O. Maier and A. I. Sokolov, Cubic-crystal critical behaviour in structural phase transitions. Bulletin of the Academy of Sciences of the USSR, Physical Series 51(12):20 (1987). Translation of: Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 51(12):2103 (1987).
    • (1987) Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya , vol.51 , Issue.12 , pp. 2103
  • 15
    • 0003002242 scopus 로고
    • Critical exponents for cubic and impure uniaxial crystals: Most accurate (?) theoretical values
    • I. O. Mayer, A. I. Sokolov, and B. N. Shalayev, Critical exponents for cubic and impure uniaxial crystals: Most accurate (?) theoretical values, Ferroelectrics 95:93 (1989).
    • (1989) Ferroelectrics , vol.95 , pp. 93
    • Mayer, I.O.1    Sokolov, A.I.2    Shalayev, B.N.3
  • 16
    • 0009157147 scopus 로고
    • Computation of hierarchical renormalization group fixed points and their ε-expansions, hep-lat/9402020
    • K. Pinn, A. Pordt, and C. Wieczerkowski, Computation of hierarchical renormalization group fixed points and their ε-expansions, hep-lat/9402020, J. Stat. Phys. 77:977 (1994).
    • (1994) J. Stat. Phys. , vol.77 , pp. 977
    • Pinn, K.1    Pordt, A.2    Wieczerkowski, C.3
  • 17
    • 0000829515 scopus 로고
    • On the renormalization group iteration of a two-dimensional hierarchical non-linear O(N ) σ-model
    • A. Pordt and T. Reisz, On the renormalization group iteration of a two-dimensional hierarchical non-linear O(N ) σ-model, Ann. Inst. Henri Poincaré 55(1):545 (1991).
    • (1991) Ann. Inst. Henri Poincaré , vol.55 , Issue.1 , pp. 545
    • Pordt, A.1    Reisz, T.2
  • 18
    • 33744649095 scopus 로고
    • Critical behavior of the MN component field model in three dimensions. 2. Three loop results
    • N. A. Shpot, Critical behavior of the MN component field model in three dimensions. 2. Three loop results, Phys. Lett. A 142:474 (1989).
    • (1989) Phys. Lett. A , vol.142 , pp. 474
    • Shpot, N.A.1
  • 19
    • 0001898814 scopus 로고
    • The renormalization group and the ε expansion
    • K. Wilson and J. Kogut, The renormalization group and the ε expansion. Phys. Rep. C 12:75 (1974).
    • (1974) Phys. Rep. C , vol.12 , pp. 75
    • Wilson, K.1    Kogut, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.