메뉴 건너뛰기




Volumn 8, Issue 3, 1999, Pages 431-451

A markov chain monte carlo convergence diagnostic using subsampling

Author keywords

Asymptotic stationarity; Confidence regions; Strong mixing

Indexed keywords


EID: 0033245945     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1080/10618600.1999.10474825     Document Type: Article
Times cited : (13)

References (30)
  • 3
    • 0043096621 scopus 로고    scopus 로고
    • Assessing Convergence of Markov Chain Monte Carlo Algorithms
    • Brooks, S. P., and Roberts, G. O. (1999), “Assessing Convergence of Markov Chain Monte Carlo Algorithms,” Statistics and Computing, 8, 319-335.
    • (1999) Statistics and Computing , vol.8 , pp. 319-335
    • Brooks, S.P.1    Roberts, G.O.2
  • 4
    • 0000514094 scopus 로고
    • The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence
    • Carlstein, E. (1986), “The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence,” The Annals of Statistics, 14, 1171-1179.
    • (1986) The Annals of Statistics , vol.14 , pp. 1171-1179
    • Carlstein, E.1
  • 5
    • 0030539336 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review
    • Cowles, M. K., and Carlin, B. P. (1996), “Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review,” Journal of the American Statistical Association, 91, 883-904.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 9
    • 0001582213 scopus 로고    scopus 로고
    • Inference and Monitoring Convergence
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, New York: Chapman and Hall
    • Gelman, A. (1996), “Inference and Monitoring Convergence,” in Markov Chain Monte Carlo in Practice, eds. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, New York: Chapman and Hall, pp. 131-143.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 131-143
    • Gelman, A.1
  • 10
    • 84972492387 scopus 로고
    • Inference from Iterative Simulation Using Multiple Sequences
    • Gelman, A., and Rubin, D. (1992), “Inference from Iterative Simulation Using Multiple Sequences,” Statistical Science, 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 11
  • 13
    • 0001032163 scopus 로고
    • Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments
    • J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press
    • Geweke, J. (1992), “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments,” in Bayesian Statistics 4, eds. J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 169-193.
    • (1992) Bayesian Statistics 4 , pp. 169-193
    • Geweke, J.1
  • 14
    • 77956889087 scopus 로고
    • Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
    • Green, P. J. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 15
    • 77956890307 scopus 로고
    • On Blocking Rules for the Bootstrap with Dependent Data
    • Hall, P., Horowitz, J. L., and Jing, B. (1995), “On Blocking Rules for the Bootstrap with Dependent Data,” Biometrika, 82, 561-574.
    • (1995) Biometrika , vol.82 , pp. 561-574
    • Hall, P.1    Horowitz, J.L.2    Jing, B.3
  • 16
    • 77956890234 scopus 로고
    • Monte Carlo Sampling Methods Using Markov Chains and their Applications
    • Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chains and their Applications,” Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 17
    • 0000181737 scopus 로고
    • The Jackknife and the Bootstrap for General Stationary Observations
    • Ktinsch, H. R. (1989), “The Jackknife and the Bootstrap for General Stationary Observations,” The Annals of Statistics, 17, 1217-1241.
    • (1989) The Annals of Statistics , vol.17 , pp. 1217-1241
    • Ktinsch, H.R.1
  • 21
    • 38249001504 scopus 로고
    • On the Sample Variance of Linear Statistics Derived from Mixing Sequences
    • Politis, D. N., and Romano, J. P. (1993), “On the Sample Variance of Linear Statistics Derived from Mixing Sequences,” Stochastic Processes and their Applications, 45, 155-167.
    • (1993) Stochastic Processes and Their Applications , vol.45 , pp. 155-167
    • Politis, D.N.1    Romano, J.P.2
  • 22
    • 21844512391 scopus 로고
    • Large Sample Confidence Regions Based on Subsamples Under Minimal Assumptions
    • Politis, D. N., and Romano, J. P. (1994), “Large Sample Confidence Regions Based on Subsamples Under Minimal Assumptions,” The Annals of Statistics, 22, 2031-2050.
    • (1994) The Annals of Statistics , vol.22 , pp. 2031-2050
    • Politis, D.N.1    Romano, J.P.2
  • 23
    • 0001232820 scopus 로고    scopus 로고
    • Subsampling for Heteroskedastic Time Series
    • Politis, D. N., Romano, J. P., and Wolf, M. (1997), “Subsampling for Heteroskedastic Time Series,” Journal of Econometrics, 81, 281-318.
    • (1997) Journal of Econometrics , vol.81 , pp. 281-318
    • Politis, D.N.1    Romano, J.P.2    Wolf, M.3
  • 24
    • 0000094543 scopus 로고    scopus 로고
    • Convergence of Markov Chain Monte Carlo Algorithms
    • J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press
    • Poison, N. G. (1996), “Convergence of Markov Chain Monte Carlo Algorithms,” in Bayesian Statistics 5, eds. J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 297-322.
    • (1996) Bayesian Statistics , vol.5 , pp. 297-322
    • Poison, N.G.1
  • 25
    • 0000759236 scopus 로고
    • How Many Iterations in the Gibbs Sampler7
    • J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press
    • Raftery, A. E., and Lewis, S. (1992), “How Many Iterations in the Gibbs Sampler7,” in Bayesian Statistics 4, eds. J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 763-773.
    • (1992) Bayesian Statistics , vol.4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 26
    • 0002605356 scopus 로고
    • A Central Limit Theorem and a Strong Mixing Condition
    • Rosenblatt, M. (1956), “A Central Limit Theorem and a Strong Mixing Condition,” in Proceedings of National Academy of Science, 42, pp. 43-47.
    • (1956) Proceedings of National Academy of Science , vol.42 , pp. 43-47
    • Rosenblatt, M.1
  • 27
    • 0001764140 scopus 로고
    • Rates of Convergence for Data Augmentation on the Finite Sample Space
    • Rosenthal, J. S. (1993), “Rates of Convergence for Data Augmentation on the Finite Sample Space,” Annals of Applied Probability, 3, 819-839.
    • (1993) Annals of Applied Probability , vol.3 , pp. 819-839
    • Rosenthal, J.S.1
  • 29
    • 0000576595 scopus 로고
    • Markov Chains for Exploring Posterior Distributions
    • (with discussion)
    • Tierney, L. (1994), “Markov Chains for Exploring Posterior Distributions” (with discussion), The Annals of Statistics, 22, 1701-1762.
    • (1994) The Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.