메뉴 건너뛰기




Volumn 27, Issue 1, 1999, Pages 206-225

Growth profile and invariant measures for the weakly supercritical contact process on a homogeneous tree

Author keywords

Contact process; Homogeneous tree; Weak survival

Indexed keywords


EID: 0033243131     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1022677259     Document Type: Article
Times cited : (12)

References (17)
  • 1
    • 0000236076 scopus 로고
    • Exponential decay for subcritical contact and percolation processes
    • BEZUIDENHOUT, C. and GRIMMETT, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 984-1009.
    • (1991) Ann. Probab. , vol.19 , pp. 984-1009
    • Bezuidenhout, C.1    Grimmett, G.2
  • 3
    • 0000157884 scopus 로고
    • Intermediate phase for the contact process on a tree
    • DURRETT, R. and SCHINAZI, R. (1995). Intermediate phase for the contact process on a tree. Ann. Probab. 23 668-673.
    • (1995) Ann. Probab. , vol.23 , pp. 668-673
    • Durrett, R.1    Schinazi, R.2
  • 5
    • 0001374307 scopus 로고
    • Additive set-valued Markov processes and percolation methods
    • HARRIS, T. E. (1978). Additive set-valued Markov processes and percolation methods. Ann. Probab. 6 355-378.
    • (1978) Ann. Probab. , vol.6 , pp. 355-378
    • Harris, T.E.1
  • 7
    • 0032382391 scopus 로고    scopus 로고
    • Limit set of a weekly supercritical contact process on a homogeneous tree
    • LALLEY, S. and SELLKE, T. (1998). Limit set of a weekly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644-657.
    • (1998) Ann. Probab. , vol.26 , pp. 644-657
    • Lalley, S.1    Sellke, T.2
  • 9
    • 0040516844 scopus 로고    scopus 로고
    • Branching random walks and contact processes on homogeneous trees
    • LIGGETT, T. (1996). Branching random walks and contact processes on homogeneous trees. Probab. Theory Related Fields 106 495-519.
    • (1996) Probab. Theory Related Fields , vol.106 , pp. 495-519
    • Liggett, T.1
  • 10
    • 0030371517 scopus 로고    scopus 로고
    • Multiple transition points for the contact process on the binary tree
    • LIGGETT, T. (1996). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675-1710.
    • (1996) Ann. Probab. , vol.24 , pp. 1675-1710
    • Liggett, T.1
  • 11
    • 0031493470 scopus 로고    scopus 로고
    • Stochastic models of interacting systems
    • LIGGETT, T. (1996). Stochastic models of interacting systems. Ann. Probab. 25 1-29.
    • (1996) Ann. Probab. , vol.25 , pp. 1-29
    • Liggett, T.1
  • 13
    • 0000819241 scopus 로고
    • Coincidence of critical points in percolation problems
    • MENSHIKOV, M. (1986). Coincidence of critical points in percolation problems. Soviet Math. Dokl. 33 856-859.
    • (1986) Soviet Math. Dokl. , vol.33 , pp. 856-859
    • Menshikov, M.1
  • 14
    • 0000771579 scopus 로고
    • The contact process on trees
    • PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116.
    • (1992) Ann. Probab. , vol.20 , pp. 2089-2116
    • Pemantle, R.1
  • 15
    • 0032023976 scopus 로고    scopus 로고
    • The triangle condition for contact processes on homogeneous trees
    • SCHONMANN, R. (1998). The triangle condition for contact processes on homogeneous trees. J. Statist. Phys. 90 1429-1440.
    • (1998) J. Statist. Phys. , vol.90 , pp. 1429-1440
    • Schonmann, R.1
  • 16
    • 0030360082 scopus 로고    scopus 로고
    • Existence of an intermediate phase for the contact process on trees
    • STAGEY, A. M. (1996). Existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711-1726.
    • (1996) Ann. Probab. , vol.24 , pp. 1711-1726
    • Stagey, A.M.1
  • 17
    • 0040454827 scopus 로고    scopus 로고
    • The complete convergence theorem of the contact process on trees
    • ZHANG, Y. (1996). The complete convergence theorem of the contact process on trees. Ann. Probab. 24 1408-1443.
    • (1996) Ann. Probab. , vol.24 , pp. 1408-1443
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.