-
1
-
-
0000236076
-
Exponential decay for subcritical contact and percolation processes
-
BEZUIDENHOUT, C. and GRIMMETT, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 984-1009.
-
(1991)
Ann. Probab.
, vol.19
, pp. 984-1009
-
-
Bezuidenhout, C.1
Grimmett, G.2
-
3
-
-
0000157884
-
Intermediate phase for the contact process on a tree
-
DURRETT, R. and SCHINAZI, R. (1995). Intermediate phase for the contact process on a tree. Ann. Probab. 23 668-673.
-
(1995)
Ann. Probab.
, vol.23
, pp. 668-673
-
-
Durrett, R.1
Schinazi, R.2
-
5
-
-
0001374307
-
Additive set-valued Markov processes and percolation methods
-
HARRIS, T. E. (1978). Additive set-valued Markov processes and percolation methods. Ann. Probab. 6 355-378.
-
(1978)
Ann. Probab.
, vol.6
, pp. 355-378
-
-
Harris, T.E.1
-
7
-
-
0032382391
-
Limit set of a weekly supercritical contact process on a homogeneous tree
-
LALLEY, S. and SELLKE, T. (1998). Limit set of a weekly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644-657.
-
(1998)
Ann. Probab.
, vol.26
, pp. 644-657
-
-
Lalley, S.1
Sellke, T.2
-
9
-
-
0040516844
-
Branching random walks and contact processes on homogeneous trees
-
LIGGETT, T. (1996). Branching random walks and contact processes on homogeneous trees. Probab. Theory Related Fields 106 495-519.
-
(1996)
Probab. Theory Related Fields
, vol.106
, pp. 495-519
-
-
Liggett, T.1
-
10
-
-
0030371517
-
Multiple transition points for the contact process on the binary tree
-
LIGGETT, T. (1996). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675-1710.
-
(1996)
Ann. Probab.
, vol.24
, pp. 1675-1710
-
-
Liggett, T.1
-
11
-
-
0031493470
-
Stochastic models of interacting systems
-
LIGGETT, T. (1996). Stochastic models of interacting systems. Ann. Probab. 25 1-29.
-
(1996)
Ann. Probab.
, vol.25
, pp. 1-29
-
-
Liggett, T.1
-
13
-
-
0000819241
-
Coincidence of critical points in percolation problems
-
MENSHIKOV, M. (1986). Coincidence of critical points in percolation problems. Soviet Math. Dokl. 33 856-859.
-
(1986)
Soviet Math. Dokl.
, vol.33
, pp. 856-859
-
-
Menshikov, M.1
-
14
-
-
0000771579
-
The contact process on trees
-
PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116.
-
(1992)
Ann. Probab.
, vol.20
, pp. 2089-2116
-
-
Pemantle, R.1
-
15
-
-
0032023976
-
The triangle condition for contact processes on homogeneous trees
-
SCHONMANN, R. (1998). The triangle condition for contact processes on homogeneous trees. J. Statist. Phys. 90 1429-1440.
-
(1998)
J. Statist. Phys.
, vol.90
, pp. 1429-1440
-
-
Schonmann, R.1
-
16
-
-
0030360082
-
Existence of an intermediate phase for the contact process on trees
-
STAGEY, A. M. (1996). Existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711-1726.
-
(1996)
Ann. Probab.
, vol.24
, pp. 1711-1726
-
-
Stagey, A.M.1
-
17
-
-
0040454827
-
The complete convergence theorem of the contact process on trees
-
ZHANG, Y. (1996). The complete convergence theorem of the contact process on trees. Ann. Probab. 24 1408-1443.
-
(1996)
Ann. Probab.
, vol.24
, pp. 1408-1443
-
-
Zhang, Y.1
|