-
1
-
-
0002918206
-
Volterra operator algebra for zero curvature representation. Universality of KP
-
edited by A. S. Fokas, D. J. Kaup, A. C. Newell, and V. E. Zakharov Springer-Verlag, Berlin
-
A. Y. Orlov, "Volterra operator algebra for zero curvature representation. Universality of KP," in Nonlinear Processes in Physics, edited by A. S. Fokas, D. J. Kaup, A. C. Newell, and V. E. Zakharov (Springer-Verlag, Berlin 1991), pp. 126-131.
-
(1991)
Nonlinear Processes in Physics
, pp. 126-131
-
-
Orlov, A.Y.1
-
2
-
-
36449006460
-
Constraints of the Kadomtsev-Petviashvili hierarchy
-
Y. Cheng, "Constraints of the Kadomtsev-Petviashvili hierarchy," J. Math. Phys. 33, 3774-3782 (1992).
-
(1992)
J. Math. Phys.
, vol.33
, pp. 3774-3782
-
-
Cheng, Y.1
-
3
-
-
0001297868
-
Constrained KP hierarchies: Additional symmetries, Darboux-Bäcklund solutions and relations to multi-matrix models
-
H. Aratyn, E. Nissimov, and S. Pacheva, "Constrained KP hierarchies: additional symmetries, Darboux-Bäcklund solutions and relations to multi-matrix models," Int. J. Mod. Phys. A 12, 1265-1340 (1997).
-
(1997)
Int. J. Mod. Phys. A
, vol.12
, pp. 1265-1340
-
-
Aratyn, H.1
Nissimov, E.2
Pacheva, S.3
-
4
-
-
0031558513
-
KP symmetry reductions and a generalized constraint
-
I. Loris and R. Willox, "KP symmetry reductions and a generalized constraint," J. Phys. A 30, 6925-6938 (1997).
-
(1997)
J. Phys. A
, vol.30
, pp. 6925-6938
-
-
Loris, I.1
Willox, R.2
-
5
-
-
21144459129
-
New reductions of the Kadomtsev-Petviashvili and two-dimensional Toda lattice hierarachies via symmetry constraints
-
B. Konopelchenko and W. Strampp, "New reductions of the Kadomtsev-Petviashvili and two-dimensional Toda lattice hierarachies via symmetry constraints," J. Math. Phys. 33, 3676-3686 (1992).
-
(1992)
J. Math. Phys.
, vol.33
, pp. 3676-3686
-
-
Konopelchenko, B.1
Strampp, W.2
-
6
-
-
0032073617
-
An analytic description of the vector constrained KP hierarchy
-
G. Helminck and J. W. van de Leur, "An analytic description of the vector constrained KP hierarchy," Commun. Math. Phys. 193, 627-641 (1998).
-
(1998)
Commun. Math. Phys.
, vol.193
, pp. 627-641
-
-
Helminck, G.1
Van De Leur, J.W.2
-
7
-
-
0002439092
-
Transformation groups for soliton equations
-
edited by M. Jimbo and T. Miwa World Scientific, Singapore
-
E. Date, M. Kashiwara, M Jimbo, and T. Miwa, "Transformation groups for soliton equations," in Proceedings of the RIMS Symposium on Non-Linear Integrable Systems - Classical Theory and Quantum Theory, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983), pp. 39-119.
-
(1983)
Proceedings of the RIMS Symposium on Non-linear Integrable Systems - Classical Theory and Quantum Theory
, pp. 39-119
-
-
Date, E.1
Kashiwara, M.2
Jimbo, M.3
Miwa, T.4
-
8
-
-
0001782995
-
Darboux transformations from reductions of the KP hierarchy
-
edited by V. G. Makhankov, A. R. Bishop, and D. D. Holm World Scientific, Singapore
-
J. J. C. Nimmo, "Darboux transformations from reductions of the KP hierarchy," in Nonlinear Evolution Equations and Dynamical Systems, edited by V. G. Makhankov, A. R. Bishop, and D. D. Holm (World Scientific, Singapore, 1995), pp. 168-177.
-
(1995)
Nonlinear Evolution Equations and Dynamical Systems
, pp. 168-177
-
-
Nimmo, J.J.C.1
-
9
-
-
0002781407
-
Darboux theorems and the KP hierarchy
-
edited by P. A. Clarkson Kluwer Academic, Dordrecht
-
W. Oevel and W. Schief, "Darboux theorems and the KP hierarchy," in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, edited by P. A. Clarkson (Kluwer Academic, Dordrecht, 1993), pp. 193-206.
-
(1993)
Applications of Analytic and Geometric Methods to Nonlinear Differential Equations
, pp. 193-206
-
-
Oevel, W.1
Schief, W.2
-
10
-
-
0032069132
-
Method of squared eigenfunction potentials in integrable hierarchies of KP type
-
H. Aratyn, E. Nissimov, and S. Pacheva, "Method of squared eigenfunction potentials in integrable hierarchies of KP type," Commun. Math. Phys. 193, 493-525 (1998).
-
(1998)
Commun. Math. Phys.
, vol.193
, pp. 493-525
-
-
Aratyn, H.1
Nissimov, E.2
Pacheva, S.3
-
11
-
-
0000266051
-
Soliton solutions to the BKP equations. I. The Pfaffian technique
-
R. Hirota, "Soliton solutions to the BKP equations. I. the Pfaffian technique," J. Phys. Soc. Jpn. 58, 2285-2296 (1989).
-
(1989)
J. Phys. Soc. Jpn.
, vol.58
, pp. 2285-2296
-
-
Hirota, R.1
-
12
-
-
0009282871
-
Darboux transformations for the two-dimensional Toda lattice
-
J. J. C. Nimmo and R. Willox, "Darboux transformations for the two-dimensional Toda lattice," Proc. R. Soc. London, Ser. A 453, 2497-2525 (1997).
-
(1997)
Proc. R. Soc. London, Ser. A
, vol.453
, pp. 2497-2525
-
-
Nimmo, J.J.C.1
Willox, R.2
-
14
-
-
0003252813
-
Soliton equations and Hamiltonian systems
-
World Scientific, Singapore
-
L. Dickey, "Soliton equations and Hamiltonian systems," Vol. 12 of Advanced Series in Mathematical Physics (World Scientific, Singapore, 1991).
-
(1991)
Advanced Series in Mathematical Physics
, vol.12
-
-
Dickey, L.1
-
15
-
-
0002464716
-
Direct methods in soliton theory
-
edited by R. K. Bullough and P. J. Caudrey Springer-Verlag, Berlin
-
R. Hirota, "Direct methods in soliton theory," in Solitons, edited by R. K. Bullough and P. J. Caudrey (Springer-Verlag, Berlin, 1980), pp. 157-176.
-
(1980)
Solitons
, pp. 157-176
-
-
Hirota, R.1
-
16
-
-
0001037040
-
Darboux theorems and Wronskian formulas for integrable systems I. Constrained KP flows
-
W. Oevel, "Darboux theorems and Wronskian formulas for integrable systems I. Constrained KP flows," Physica A 195, 533-576 (1993).
-
(1993)
Physica A
, vol.195
, pp. 533-576
-
-
Oevel, W.1
-
17
-
-
0031520778
-
On solutions of constrained Kadomtsev-Petviashvili equations: Giammians
-
I. Loris and R. Willox, "On solutions of constrained Kadomtsev-Petviashvili equations: Giammians," J. Math. Phys. 38, 5190-5197 (1997).
-
(1997)
J. Math. Phys.
, vol.38
, pp. 5190-5197
-
-
Loris, I.1
Willox, R.2
-
18
-
-
0002039001
-
A bilinear N-soliton formula for the KP equation
-
A. Nakamura, "A bilinear N-soliton formula for the KP equation," J. Phys. Soc. Jpn. 58, 412-422 (1989).
-
(1989)
J. Phys. Soc. Jpn.
, vol.58
, pp. 412-422
-
-
Nakamura, A.1
|