메뉴 건너뛰기




Volumn 36, Issue 1, 1999, Pages 194-210

Extreme values of phase-type and mixed random variables with parallel-processing examples

Author keywords

Extreme values; Mixed random variables; Parallel processing; PERT; Phase type distributions; Random environments; Task graphs

Indexed keywords


EID: 0033238291     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1017/S002190020001696X     Document Type: Article
Times cited : (11)

References (17)
  • 1
    • 0024715589 scopus 로고
    • A classified bibliography of research on stochastic PERT networks: 1966-1987
    • ADLAKHA, V. G. AND KULKARNI, V. G. (1986). A classified bibliography of research on stochastic PERT networks: 1966-1987. INFOR 27, 272-296.
    • (1986) INFOR , vol.27 , pp. 272-296
    • Adlakha, V.G.1    Kulkarni, V.G.2
  • 3
    • 0000007748 scopus 로고
    • Limit theorems for extreme values of chain-dependent processes
    • DENZEL, G. E. AND O'BRIEN, G. L. (1975). Limit theorems for extreme values of chain-dependent processes. Ann. Prob. 3, 773-779.
    • (1975) Ann. Prob. , vol.3 , pp. 773-779
    • Denzel, G.E.1    O'Brien, G.L.2
  • 4
    • 0009243150 scopus 로고
    • The limiting distribution of the maximum term in a sequence of random variables defined on a Markov chain
    • FABENS, A. J. AND NEUTS, M. F. (1970). The limiting distribution of the maximum term in a sequence of random variables defined on a Markov chain. J. Appl. Prob. 7, 754-760.
    • (1970) J. Appl. Prob. , vol.7 , pp. 754-760
    • Fabens, A.J.1    Neuts, M.F.2
  • 5
    • 0010819737 scopus 로고
    • Stochastic PERT networks as models of cognition: Derivation of the mean, variance, and distribution of reaction time using order-of-processing (OP) diagrams
    • FISHER, D. L. AND GOLDSTEIN, W. M. (1983). Stochastic PERT networks as models of cognition: derivation of the mean, variance, and distribution of reaction time using order-of-processing (OP) diagrams. J. Math. Psychology 27, 121-151.
    • (1983) J. Math. Psychology , vol.27 , pp. 121-151
    • Fisher, D.L.1    Goldstein, W.M.2
  • 6
    • 0021785617 scopus 로고
    • Stochastic PERT networks: OP diagrams, critical aths and the project completion time
    • FISHER, D. L., SAISI, D. AND GOLDSTEIN, W. M. (1985). Stochastic PERT networks: OP diagrams, critical aths and the project completion time. Comput. Ops. Res. 12, 471-482.
    • (1985) Comput. Ops. Res. , vol.12 , pp. 471-482
    • Fisher, D.L.1    Saisi, D.2    Goldstein, W.M.3
  • 8
    • 0000005110 scopus 로고
    • Sur la distribution limite du terme maximum d'une série aléatoire
    • GNEDENKO, B. V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 43, 423-453.
    • (1943) Ann. Math. , vol.43 , pp. 423-453
    • Gnedenko, B.V.1
  • 11
    • 0022785024 scopus 로고
    • Markov and Markov-regenerative PERT networks
    • KULKARNI, V. G. AND ADLAKHA, V. G. (1986). Markov and Markov-regenerative PERT networks. Operat. Res. 34, 769-781.
    • (1986) Operat. Res. , vol.34 , pp. 769-781
    • Kulkarni, V.G.1    Adlakha, V.G.2
  • 15
    • 0000569678 scopus 로고
    • Tail equivalence and its applications
    • RESNICK, S. I. (1971). Tail equivalence and its applications. J. Appl. Prob. 8, 136-156.
    • (1971) J. Appl. Prob. , vol.8 , pp. 136-156
    • Resnick, S.I.1
  • 16
    • 0001151787 scopus 로고
    • Limit laws for maxima of a sequence of random variables defined on a Markov chain
    • RESNICK, S. I. AND NEUTS, M. F. (1970). Limit laws for maxima of a sequence of random variables defined on a Markov chain. Adv. Appl. Prob. 2, 323-343.
    • (1970) Adv. Appl. Prob. , vol.2 , pp. 323-343
    • Resnick, S.I.1    Neuts, M.F.2
  • 17
    • 0009157123 scopus 로고
    • Limit laws for the maxima of chain-dependent sequences with positive extremal index
    • TURKMAN, K. F. AND OLIVEIRA, M. F. (1992). Limit laws for the maxima of chain-dependent sequences with positive extremal index. J. Appl. Prob. 29, 222-227.
    • (1992) J. Appl. Prob. , vol.29 , pp. 222-227
    • Turkman, K.F.1    Oliveira, M.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.