메뉴 건너뛰기




Volumn 36, Issue 1, 1999, Pages 146-154

Extinction of population-size-dependent branching processes in random environments

Author keywords

Extinction probabilities; Markov chains in random environments; Stochastic population models

Indexed keywords


EID: 0033238268     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0021900200016922     Document Type: Article
Times cited : (13)

References (5)
  • 1
    • 0000546035 scopus 로고
    • On branching processes with random environments: I extinction probabilities
    • ATHREYA, K. B. AND KARLIN, S. (1971). On branching processes with random environments: I extinction probabilities. Ann. Math. Statist. 42, 1499-1520.
    • (1971) Ann. Math. Statist. , vol.42 , pp. 1499-1520
    • Athreya, K.B.1    Karlin, S.2
  • 2
    • 0002860338 scopus 로고
    • The ergodic theory of Markov chains in random environments
    • COGBURN, R. (1984). The ergodic theory of Markov chains in random environments. Z. Wahrscheinlichkeitsth 66, 109-128.
    • (1984) Z. Wahrscheinlichkeitsth , vol.66 , pp. 109-128
    • Cogburn, R.1
  • 3
    • 0001814148 scopus 로고
    • On population-size-dependent branching processes
    • KLEBANER, F. C. (1984). On population-size-dependent branching processes. Adv. Appl. Prob. 16, 30-55.
    • (1984) Adv. Appl. Prob. , vol.16 , pp. 30-55
    • Klebaner, F.C.1
  • 4
    • 21344480585 scopus 로고
    • A strong law and a central limit theorem for controlled Galton-Watson processes
    • PIERRE LOTI VIAUD, D. (1994). A strong law and a central limit theorem for controlled Galton-Watson processes. J. Appl. Prob. 31, 22-37.
    • (1994) J. Appl. Prob. , vol.31 , pp. 22-37
    • Pierre Loti Viaud, D.1
  • 5
    • 0000320008 scopus 로고
    • On branching processes in random environments
    • SMITH, W. L. AND WILKINSON, W. E. (1969). On branching processes in random environments. Ann. Math. Statist. 40, 814-827.
    • (1969) Ann. Math. Statist. , vol.40 , pp. 814-827
    • Smith, W.L.1    Wilkinson, W.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.