메뉴 건너뛰기




Volumn 36, Issue 1, 1999, Pages 97-104

Bounds for the total variation distance between the binomial and the poisson distribution in case of medium-sized success probabilities

Author keywords

Accumulated claim distribution; Binomial distribution; Poisson distribution; Risk theory; Total variation distance

Indexed keywords


EID: 0033238260     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0021900200016879     Document Type: Article
Times cited : (8)

References (17)
  • 1
    • 0000549988 scopus 로고
    • Compound Poisson approximation for nonnegative random variables via Stein's method
    • BARBOUR, A. D., CHEN, L. H. Y. AND LOH, W.-L. (1992a). Compound Poisson approximation for nonnegative random variables via Stein's method. Ann. Prob. 20, 1843-1866.
    • (1992) Ann. Prob. , vol.20 , pp. 1843-1866
    • Barbour, A.D.1    Chen, L.H.Y.2    Loh, W.-L.3
  • 5
    • 0009160519 scopus 로고
    • Some asymptotic and large deviation results in Poisson approximation
    • CHEN, L. H. Y. AND CHOI, K. P. (1992). Some asymptotic and large deviation results in Poisson approximation. Ann. Prob. 20, 1867-1876.
    • (1992) Ann. Prob. , vol.20 , pp. 1867-1876
    • Chen, L.H.Y.1    Choi, K.P.2
  • 7
    • 51249173871 scopus 로고
    • A new semigroup technique in Poisson approximation
    • DEHEUVELS, P., PFEIFER, D. AND PURI, M. L. (1989). A new semigroup technique in Poisson approximation. Semigroup Forum 38, 189-201.
    • (1989) Semigroup Forum , vol.38 , pp. 189-201
    • Deheuvels, P.1    Pfeifer, D.2    Puri, M.L.3
  • 8
    • 0003014023 scopus 로고
    • Binomial approximation to the Poisson binomial distribution
    • EHM, W. (1991). Binomial approximation to the Poisson binomial distribution. Statist. Prob. Lett. 11, 7-16.
    • (1991) Statist. Prob. Lett. , vol.11 , pp. 7-16
    • Ehm, W.1
  • 10
    • 0009297160 scopus 로고
    • Approximation of aggregate claim distributions by compound Poisson distributions
    • HIPP, C. (1985). Approximation of aggregate claim distributions by compound Poisson distributions. Insurance: Mathematics and Economics 4, 227-232.
    • (1985) Insurance: Mathematics and Economics , vol.4 , pp. 227-232
    • Hipp, C.1
  • 11
    • 0009160767 scopus 로고
    • The total variation distance between the binomial and the Poisson distribution
    • KENNEDY, J. E. AND QUINE, M. P. (1989). The total variation distance between the binomial and the Poisson distribution. Ann. Prob. 17, 396-400.
    • (1989) Ann. Prob. , vol.17 , pp. 396-400
    • Kennedy, J.E.1    Quine, M.P.2
  • 12
    • 0001043914 scopus 로고
    • An approximation theorem for the Poisson binomial distribution
    • LECAM, L. (1960). An approximation theorem for the Poisson binomial distribution. Pacific J. Math. 10, 1181-1197.
    • (1960) Pacific J. Math. , vol.10 , pp. 1181-1197
    • LeCam, L.1
  • 13
    • 84995094304 scopus 로고
    • A note on the upper bound for the distance in total variation between the binomial and the Poisson distribution
    • ROMANOWSKA, M. (1977). A note on the upper bound for the distance in total variation between the binomial and the Poisson distribution. Statist. Neerlandica 31, 127-130.
    • (1977) Statist. Neerlandica , vol.31 , pp. 127-130
    • Romanowska, M.1
  • 14
    • 0001443701 scopus 로고
    • A general Poisson approximation theorem
    • SERFLING, R. J. (1975). A general Poisson approximation theorem. Ann. Prob. 3, 726-731.
    • (1975) Ann. Prob. , vol.3 , pp. 726-731
    • Serfling, R.J.1
  • 15
    • 0000903210 scopus 로고
    • Approximation of a generalized binomial distribution
    • SHORGIN, S. Y. (1977). Approximation of a generalized binomial distribution. Theory Prob. Appl. 22, 846-850.
    • (1977) Theory Prob. Appl. , vol.22 , pp. 846-850
    • Shorgin, S.Y.1
  • 17
    • 0001038049 scopus 로고
    • A unification of some approaches to Poisson approximation
    • WITTE, H.-J. (1990). A unification of some approaches to Poisson approximation. J. Appl. Prob. 27, 611-621.
    • (1990) J. Appl. Prob. , vol.27 , pp. 611-621
    • Witte, H.-J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.