-
1
-
-
84966250363
-
An equivalence relation that is not freely generated
-
S. ADAMS, An equivalence relation that is not freely generated. Proc. A.M.S. 102 (1988), 505-506.
-
(1988)
Proc. A.M.S.
, vol.102
, pp. 505-506
-
-
Adams, S.1
-
2
-
-
0030351943
-
Reduction of cocycles with hyperbolic targets, ergod
-
_, Reduction of cocycles with hyperbolic targets, Ergod. Th. Dynam. Sys. 16 (1996), 1111-1145.
-
(1996)
Th. Dynam. Sys.
, vol.16
, pp. 1111-1145
-
-
-
3
-
-
0000838113
-
An amenable equivalence relation is generated by a single transformation
-
A. CONNES, J. FELDMAN, and B. WEISS, An amenable equivalence relation is generated by a single transformation. Ergod. Th. Dyn. Sys. 1 (1981), 431-450.
-
(1981)
Ergod. Th. Dyn. Sys.
, vol.1
, pp. 431-450
-
-
Connes, A.1
Feldman, J.2
Weiss, B.3
-
4
-
-
0001353790
-
Completely bounded multipliers of the Fourier algebra of a simple lie group of real rank one
-
M. COWLING and U. HAAGERUP. Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989). 507-549.
-
(1989)
Invent. Math.
, vol.96
, pp. 507-549
-
-
Cowling, M.1
Haagerup, U.2
-
6
-
-
0000987652
-
On groups of measure preserving transformations. I, II
-
H. DYE, On groups of measure preserving transformations. I, II. Amer. J. Math. 81 (1959). 119-159; 85 (1963), 551-576.
-
(1959)
Amer. J. Math.
, vol.81
, pp. 119-159
-
-
H, D.Y.E.1
-
7
-
-
0000573518
-
-
H. DYE, On groups of measure preserving transformations. I, II. Amer. J. Math. 81 (1959). 119-159; 85 (1963), 551-576.
-
(1963)
Amer. J. Math.
, vol.85
, pp. 551-576
-
-
-
8
-
-
84968495052
-
Ergodic equivalence relations, cohomology and von neumann algebras I, II
-
J. FELDMAN and C. C. MOORE, Ergodic equivalence relations, cohomology and von Neumann algebras I, II Trans. A.M.S. 234 (1977), 289-324, 325-359.
-
(1977)
Trans. A.M.S.
, vol.234
, pp. 289-324
-
-
Feldman, J.1
Moore, C.C.2
-
9
-
-
0033235958
-
Gromov's measure equivalence and rigidity of higher rank lattices
-
A. FURMAN, Gromov's measure equivalence and rigidity of higher rank lattices. Ann. of Math. 150 (1999), 1059-1081.
-
(1999)
Ann. of Math.
, vol.150
, pp. 1059-1081
-
-
Furman, A.1
-
10
-
-
0002874575
-
Asymptotic invariants of infinite groups
-
Geometric Group Theory 2, Cambridge Univ. Press, Cambridge
-
M. GROMOV, Asymptotic invariants of infinite groups, in Geometric Group Theory 2, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, Cambridge, 1993.
-
(1993)
London Math. Soc. Lecture Note Ser.
, vol.182
-
-
Gromov, M.1
-
11
-
-
0003188483
-
Equivalence of measure preserving transformations
-
A.M.S., Providence. RI
-
D. ORNSTEIN, D. RUDOLPH, and B WEISS, Equivalence of Measure Preserving Transformations, Memoirs of A.M.S. 37, no. 262, A.M.S., Providence. RI (1982).
-
(1982)
Memoirs of A.m.s.
, vol.37
, Issue.262
-
-
Ornstein, D.1
Rudolph, D.2
Weiss, B.3
-
12
-
-
84966235302
-
Ergodic theory of amenable group actions I. The rohlin lemma
-
D. ORNSTEIN and B. WEISS, Ergodic theory of amenable group actions I. The Rohlin lemma. Bull. A.M.S. 2 (1980). 161-164.
-
(1980)
Bull. A.M.S.
, vol.2
, pp. 161-164
-
-
Ornstein, D.1
Weiss, B.2
-
13
-
-
0001183681
-
Stabilizers for ergodic actions of higher rank semisimple groups
-
G. STUCK and R. J. ZIMMER, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. 139 (1994), 723-747.
-
(1994)
Ann. of Math.
, vol.139
, pp. 723-747
-
-
Stuck, G.1
Zimmer, R.J.2
-
14
-
-
0001312712
-
Measurable quotients of unipotent translations on homogeneous spaces
-
D. WITTE, Measurable quotients of unipotent translations on homogeneous spaces. Trans. A.M.S. 345 (1994), 577-594.
-
(1994)
Trans. A.M.S.
, vol.345
, pp. 577-594
-
-
Witte, D.1
-
15
-
-
0001559020
-
Amenable ergodic group actions and an application to Poisson boundaries of random walks
-
R. J. ZIMMER, Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Func. Anal. 27 (1978), 350-372.
-
(1978)
J. Func. Anal.
, vol.27
, pp. 350-372
-
-
Zimmer, R.J.1
-
16
-
-
0001551945
-
Strong rigidity for ergodic actions of semisimple lie groups
-
_, Strong rigidity for ergodic actions of semisimple Lie groups. Ann. of Math. 112 (1980) 511-529.
-
(1980)
Ann. of Math.
, vol.112
, pp. 511-529
-
-
-
17
-
-
51249172393
-
Groups generating transversals to semisimple lie group actions
-
_, Groups generating transversals to semisimple Lie group actions. Israel J. Math. 73 (1991) 151-159.
-
(1991)
Israel J. Math.
, vol.73
, pp. 151-159
-
-
|