-
1
-
-
34250084341
-
Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I
-
[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, Geom. Funct. Anal. 3 (1993), 107-156._, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, II, Geom. Funct. Anal. 3 (1993), 202-262.
-
(1993)
Geom. Funct. Anal.
, vol.3
, pp. 107-156
-
-
Bourgain, J.1
-
2
-
-
0009303159
-
Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, II
-
[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, Geom. Funct. Anal. 3 (1993), 107-156._, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, II, Geom. Funct. Anal. 3 (1993), 202-262.
-
(1993)
Geom. Funct. Anal.
, vol.3
, pp. 202-262
-
-
-
3
-
-
0002213671
-
p′ estimates for the wave equation
-
p′ estimates for the wave equation, Math. Z. 145 (1975), 251-254.
-
(1975)
Math. Z.
, vol.145
, pp. 251-254
-
-
Brenner, P.1
-
4
-
-
58149363006
-
Generalized Strichartz inequality for the wave equation
-
[3] J. Ginibre and G. Velo, Generalized Strichartz inequality for the wave equation, J. Funct. Anal. 133 (1995), 50-68.
-
(1995)
J. Funct. Anal.
, vol.133
, pp. 50-68
-
-
Ginibre, J.1
Velo, G.2
-
5
-
-
84974004169
-
The cauchy problem for the Korteweg-De Vries equation in Sobolev spaces of negative indices
-
[4] C. Kenig, G. Ponce, and L. Vega, The Cauchy problem for the Korteweg-De Vries equation in Sobolev spaces of negative indices, Duke Math J. 71 (1994), 1-21.
-
(1994)
Duke Math J.
, vol.71
, pp. 1-21
-
-
Kenig, C.1
Ponce, G.2
Vega, L.3
-
6
-
-
0001138601
-
Endpoint Strichartz estimates
-
[5] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980.
-
(1998)
Amer. J. Math.
, vol.120
, pp. 955-980
-
-
Keel, M.1
Tao, T.2
-
7
-
-
84990576528
-
Space-time estimates for null forms and the local existence theorem
-
[6] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math 46 (1993), 1221-1268.
-
(1993)
Comm. Pure Appl. Math
, vol.46
, pp. 1221-1268
-
-
Klainerman, S.1
Machedon, M.2
-
8
-
-
84973999874
-
On the Maxwell-Klein-Gordon equation with finite energy
-
[7] _, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J. 74 (1994), 19-44.
-
(1994)
Duke Math. J.
, vol.74
, pp. 19-44
-
-
-
9
-
-
0000098443
-
3+1
-
3+1, Ann. of Math. (2) 142 (1995), 39-119.
-
(1995)
Ann. of Math.
, vol.142
, Issue.2
, pp. 39-119
-
-
-
10
-
-
0001151241
-
Remark on Strichartz type inequalities
-
With appendices by J. Bourgain and D. Tataru
-
[9] _, Remark on Strichartz type inequalities, With appendices by J. Bourgain and D. Tataru, Internat. Math. Res. Notices 5 (1996), 201-220.
-
(1996)
Internat. Math. Res. Notices
, vol.5
, pp. 201-220
-
-
-
12
-
-
0033479798
-
On the optimal local regularity for the Yang-Mills equation in 4 + 1 dimensions
-
[11] S. Klainerman and D. Tataru, On the optimal local regularity for the Yang-Mills equation in 4 + 1 dimensions, J. Amer. Math. Soc. 12 (1999), 93-116.
-
(1999)
J. Amer. Math. Soc.
, vol.12
, pp. 93-116
-
-
Klainerman, S.1
Tataru, D.2
-
13
-
-
0000989783
-
Counterexamples to local existence for semi-linear wave equations
-
[12] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996), 1-16.
-
(1996)
Amer. J. Math.
, vol.118
, pp. 1-16
-
-
Lindblad, H.1
-
14
-
-
0001478425
-
On existence and scattering with minimal regularity for semilinear wave equations
-
[13] H. Lindblad and C.D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426.
-
(1995)
J. Funct. Anal.
, vol.130
, pp. 357-426
-
-
Lindblad, H.1
Sogge, C.D.2
-
15
-
-
84972553620
-
Restrictions of Fourier transform to quadratic surfaces and decay of solutions of wave equations
-
[14] R.S. Strichartz, Restrictions of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714.
-
(1977)
Duke Math. J.
, vol.44
, pp. 705-714
-
-
Strichartz, R.S.1
-
16
-
-
0000431635
-
θ spaces and unique continuation for semilinear hyperbolic equations
-
θ spaces and unique continuation for semilinear hyperbolic equations, Comm. Partial Differential Equations 21 (1996), 841-887.
-
(1996)
Comm. Partial Differential Equations
, vol.21
, pp. 841-887
-
-
Tataru, D.1
-
17
-
-
0000312262
-
Local and global results for wave maps I
-
[16] _, Local and global results for wave maps I, Comm. Partial Differential Equations 23 (1998), 1781-1794.
-
(1998)
Comm. Partial Differential Equations
, vol.23
, pp. 1781-1794
-
-
|