-
1
-
-
0026055447
-
A generalised stochastic model for the analysis of infectious disease final size data
-
ADDY, C. L., LONGINI, J. M. AND HABER, M. (1991). A generalised stochastic model for the analysis of infectious disease final size data. Biometrics 47, 961-974.
-
(1991)
Biometrics
, vol.47
, pp. 961-974
-
-
Addy, C.L.1
Longini, J.M.2
Haber, M.3
-
3
-
-
0000943691
-
A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models
-
BALL, F. G. (1986). A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv. Appl. Prob. 18, 289-310.
-
(1986)
Adv. Appl. Prob.
, vol.18
, pp. 289-310
-
-
Ball, F.G.1
-
4
-
-
0001481954
-
Threshold behaviour in stochastic epidemics among households
-
eds. C. C. Heyde, Y. V. Prohorov, R. Pyke and S. T. Rachev (Lecture Notes in Statist. 114). Springer, New York
-
BALL, F. G. (1996). Threshold behaviour in stochastic epidemics among households. In Athens Conference on Applied Probability and Time Series, Vol. I, eds. C. C. Heyde, Y. V. Prohorov, R. Pyke and S. T. Rachev (Lecture Notes in Statist. 114). Springer, New York, pp. 253-266.
-
(1996)
Athens Conference on Applied Probability and Time Series
, vol.1
, pp. 253-266
-
-
Ball, F.G.1
-
5
-
-
0000504567
-
The final size and severity of a generalised stochastic multitype epidemic model
-
BALL, F. G. AND CLANCY, D. (1993). The final size and severity of a generalised stochastic multitype epidemic model. Adv. Appl. Prob. 25, 721-736.
-
(1993)
Adv. Appl. Prob.
, vol.25
, pp. 721-736
-
-
Ball, F.G.1
Clancy, D.2
-
6
-
-
0031285152
-
Epidemics with two levels of mixing
-
BALL, F. G., MOLLISON, D. AND SCALIA-TOMBA, G. (1997). Epidemics with two levels of mixing. Ann. Appl. Prob. 7, 46-89.
-
(1997)
Ann. Appl. Prob.
, vol.7
, pp. 46-89
-
-
Ball, F.G.1
Mollison, D.2
Scalia-Tomba, G.3
-
7
-
-
0029054589
-
The effect of the household distribution on transmission and control of highly infectious diseases
-
BECKER, N. G. AND DIETZ, K. (1995). The effect of the household distribution on transmission and control of highly infectious diseases. Math. Biosci. 127, 207-219.
-
(1995)
Math. Biosci.
, vol.127
, pp. 207-219
-
-
Becker, N.G.1
Dietz, K.2
-
9
-
-
0001611305
-
The ultimate size of carrier-borne epidemics
-
DOWNTON, F. (1968). The ultimate size of carrier-borne epidemics. Biometrika 55, 277-289.
-
(1968)
Biometrika
, vol.55
, pp. 277-289
-
-
Downton, F.1
-
10
-
-
0000740198
-
A correction to 'the area under the infectives trajectory of the general stochastic epidemic'
-
DOWNTON. F. (1972). A correction to 'The area under the infectives trajectory of the general stochastic epidemic'. J. Appl. Prob. 9, 873-876.
-
(1972)
J. Appl. Prob.
, vol.9
, pp. 873-876
-
-
Downton, F.1
-
11
-
-
0000740199
-
The cost of a general stochastic epidemic
-
GANI, J. AND JERWOOD, D. (1972). The cost of a general stochastic epidemic. J. Appl. Prob. 9, 257-269.
-
(1972)
J. Appl. Prob.
, vol.9
, pp. 257-269
-
-
Gani, J.1
Jerwood, D.2
-
12
-
-
0003036842
-
Stochastic epidemic models for SIR infectious diseases: A brief survey of the recent general theory
-
eds. J.-P. Gabriel, C. Lefèvre and P. Picard (Lecture Notes in Biomath. 86). Springer, New York
-
LEFÈVRE, C. (1990). Stochastic epidemic models for SIR infectious diseases: a brief survey of the recent general theory. In Stochastic Processes in Epidemic Theory, eds. J.-P. Gabriel, C. Lefèvre and P. Picard (Lecture Notes in Biomath. 86). Springer, New York, pp. 1-12.
-
(1990)
Stochastic Processes in Epidemic Theory
, pp. 1-12
-
-
Lefèvre, C.1
-
13
-
-
0002708819
-
A non-standard family of polynomials and the final size distribution of Reed-Frost epidemic processes
-
LEFÈVRE, C. AND PICARD, P. (1990). A non-standard family of polynomials and the final size distribution of Reed-Frost epidemic processes. Adv. Appl. Prob. 22, 25-48.
-
(1990)
Adv. Appl. Prob.
, vol.22
, pp. 25-48
-
-
Lefèvre, C.1
Picard, P.2
-
14
-
-
0000729953
-
A unified analysis of the final size and severity distribution in collective Reed-Frost epidemic processes
-
PICARD, P. AND LEFÈVRE, C. (1990). A unified analysis of the final size and severity distribution in collective Reed-Frost epidemic processes. Adv. Appl. Prob. 22, 269-294.
-
(1990)
Adv. Appl. Prob.
, vol.22
, pp. 269-294
-
-
Picard, P.1
Lefèvre, C.2
-
15
-
-
0001694893
-
Asymptotic final-size distribution for some chain-binomial processes
-
SCALIA-TOMBA, G. (1985). Asymptotic final-size distribution for some chain-binomial processes. Adv. Appl. Prob. 17, 477-495.
-
(1985)
Adv. Appl. Prob.
, vol.17
, pp. 477-495
-
-
Scalia-Tomba, G.1
-
16
-
-
0000045988
-
On the asymptotic distribution of the size of a stochastic epidemic
-
SELLKE, T. (1983). On the asymptotic distribution of the size of a stochastic epidemic. J. Appl. Prob. 20, 390-394.
-
(1983)
J. Appl. Prob.
, vol.20
, pp. 390-394
-
-
Sellke, T.1
-
17
-
-
0001236565
-
The outcome of a stochastic epidemic - A note on Bailey's paper
-
WHITTLE, P. (1955). The outcome of a stochastic epidemic - a note on Bailey's paper. Biometrika 42, 116-122.
-
(1955)
Biometrika
, vol.42
, pp. 116-122
-
-
Whittle, P.1
|