-
1
-
-
0000614853
-
The spectral shift function. The work of M. G. Krein and its further development
-
1. Birman, M. Sh., Yafaev, D. R.: The spectral shift function. The work of M. G. Krein and its further development. St. Petersburg Math. J. 4, 833-870 (1993)
-
(1993)
St. Petersburg Math. J.
, vol.4
, pp. 833-870
-
-
Birman, M.Sh.1
Yafaev, D.R.2
-
2
-
-
0000837662
-
Spectral stability under tunneling
-
2. Briet, Ph., Combes, J. M., Duclos, P.: Spectral stability under tunneling. Commun. Math. Phys. 126, 133-156 (1989)
-
(1989)
Commun. Math. Phys.
, vol.126
, pp. 133-156
-
-
Briet, Ph.1
Combes, J.M.2
Duclos, P.3
-
3
-
-
34249975895
-
Breit-Wigner formulas for the scattering phase and the total scattering cross-section in the semi-classical limit
-
3. Gerard, C., Martinez, A., Robert, D.: Breit-Wigner formulas for the scattering phase and the total scattering cross-section in the semi-classical limit. Commun. Math. Phys. 121, 323-336 (1989)
-
(1989)
Commun. Math. Phys.
, vol.121
, pp. 323-336
-
-
Gerard, C.1
Martinez, A.2
Robert, D.3
-
5
-
-
0009314063
-
Classical limit of the number of quantum states
-
K. E. Gustafson, W. P. Reinhardt eds., New York: Plenum
-
5. Lavine, R.: Classical limit of the number of quantum states. In: Quantum Mechanics in Mathematics, Chemistry and Physics. K. E. Gustafson, W. P. Reinhardt eds., New York: Plenum, 1981
-
(1981)
Quantum Mechanics in Mathematics, Chemistry and Physics
-
-
Lavine, R.1
-
6
-
-
84972554773
-
An analogue of Weyl's theorem for unbounded domains. I. II and III
-
6. Majda, A., Ralston, J.: An analogue of Weyl's theorem for unbounded domains. I. II and III. Duke Math. J. 45, 183-196 (1978); 45, 513-536 (1978); 46, 725-731 (1979)
-
(1978)
Duke Math. J.
, vol.45
, pp. 183-196
-
-
Majda, A.1
Ralston, J.2
-
7
-
-
84972570192
-
-
6. Majda, A., Ralston, J.: An analogue of Weyl's theorem for unbounded domains. I. II and III. Duke Math. J. 45, 183-196 (1978); 45, 513-536 (1978); 46, 725-731 (1979)
-
(1978)
Duke Math. J.
, vol.45
, pp. 513-536
-
-
-
8
-
-
84972562521
-
-
6. Majda, A., Ralston, J.: An analogue of Weyl's theorem for unbounded domains. I. II and III. Duke Math. J. 45, 183-196 (1978); 45, 513-536 (1978); 46, 725-731 (1979)
-
(1979)
Duke Math. J.
, vol.46
, pp. 725-731
-
-
-
9
-
-
33846685553
-
Weyl asymptotics for the phase in obstacle scattering
-
7. Melrose, R.: Weyl asymptotics for the phase in obstacle scattering. Comm. P. D. E. 13, 1431-1439 (1988)
-
(1988)
Comm. P. D. E.
, vol.13
, pp. 1431-1439
-
-
Melrose, R.1
-
10
-
-
0009368519
-
Scattering theory for the shape resonance model I. Non-resonant energies; II. Resonance scattering
-
8. Nakamura, S.: Scattering theory for the shape resonance model I. Non-resonant energies; II. Resonance scattering. Ann. Inst. H. Poincaré (Phys. Théo.) 50, 115-131 (1989); 50, 133-142 (1989)
-
(1989)
Ann. Inst. H. Poincaré (Phys. Théo.)
, vol.50
, pp. 115-131
-
-
Nakamura, S.1
-
11
-
-
0009380149
-
-
8. Nakamura, S.: Scattering theory for the shape resonance model I. Non-resonant energies; II. Resonance scattering. Ann. Inst. H. Poincaré (Phys. Théo.) 50, 115-131 (1989); 50, 133-142 (1989)
-
(1989)
Ann. Inst. H. Poincaré (Phys. Théo.)
, vol.50
, pp. 133-142
-
-
-
12
-
-
0000533128
-
Agmon-type exponential decay estimates for pseudodifferential operators
-
9. Nakamura, S.: Agmon-type exponential decay estimates for pseudodifferential operators. J. Math. Sci. Univ. Tokyo 5, 693-712 (1998)
-
(1998)
J. Math. Sci. Univ. Tokyo
, vol.5
, pp. 693-712
-
-
Nakamura, S.1
-
13
-
-
0001607851
-
Representation for the spectral shift function for perturbations of a definite sign
-
Preprint
-
10. Pushnitski, A. B.: Representation for the spectral shift function for perturbations of a definite sign. Preprint. To appear in St. Petersburg Math. J.
-
St. Petersburg Math. J
-
-
Pushnitski, A.B.1
-
17
-
-
0006902225
-
On the Weyl formula for obstacles. Partial differential equations and mathematical physics
-
(Copenhagen, 1995; Lund, 1995), Boston-Boston: Birkhauser, MA
-
14. Robert, D.: On the Weyl formula for obstacles. Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995), Progr. Nonlinear Differential Equations Appl. 21, Boston-Boston: Birkhauser, MA, 1996, pp. 264-285
-
(1996)
Progr. Nonlinear Differential Equations Appl.
, vol.21
, pp. 264-285
-
-
Robert, D.1
-
18
-
-
0000714716
-
Semiclassical asymptotics for the spectral shift function. Differential operators and spectral theory
-
V. Buslaev, M. Solomyak, D. Yafaev eds.
-
15. Robert, D.: Semiclassical asymptotics for the spectral shift function. Differential Operators and Spectral Theory, V. Buslaev, M. Solomyak, D. Yafaev eds., Amer. Math. Soc. Transl. (Ser. 2) 189, 187-203 (1999)
-
(1999)
Amer. Math. Soc. Transl. (Ser. 2)
, vol.189
, pp. 187-203
-
-
Robert, D.1
-
19
-
-
0009426115
-
Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scattering phases
-
16. Robert, D., Tamura, H.: Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scattering phases. Comm. P. D. E. 9, 1017-1058 (1984)
-
(1984)
Comm. P. D. E.
, vol.9
, pp. 1017-1058
-
-
Robert, D.1
Tamura, H.2
-
20
-
-
38249028458
-
Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes
-
17. Robert, D., Tamura, H.: Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes. J. Funct. Anal. 80, 124-147 (1988)
-
(1988)
J. Funct. Anal.
, vol.80
, pp. 124-147
-
-
Robert, D.1
Tamura, H.2
-
21
-
-
0001199652
-
Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits
-
18. Robert, D., Tamura, H.: Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits. Ann. Inst. Fourier (Grenoble) 39, 155-192 (1989)
-
(1989)
Ann. Inst. Fourier (Grenoble)
, vol.39
, pp. 155-192
-
-
Robert, D.1
Tamura, H.2
-
22
-
-
0001837689
-
Effective bounds for the spectral shift function
-
19. Sobolev, A. V.: Effective bounds for the spectral shift function. Ann. Inst. H. Poincaré (Phys. Théo.) 58, 55-83 (1993)
-
(1993)
Ann. Inst. H. Poincaré (Phys. Théo.)
, vol.58
, pp. 55-83
-
-
Sobolev, A.V.1
-
23
-
-
0003897651
-
-
Providence, RI: American Math. Soc., Proidence, RI
-
20. Yafaev, D. R.: Mathematical Scattering Theory. Providence, RI: American Math. Soc., Proidence, RI, 1992
-
(1992)
Mathematical Scattering Theory
-
-
Yafaev, D.R.1
|