-
1
-
-
0002869924
-
On periodic orbits
-
M. ARTIN and B. MAZUR, On periodic orbits, Ann. of Math. 81 (1965), 82-99.
-
(1965)
Ann. of Math.
, vol.81
, pp. 82-99
-
-
Artin, M.1
Mazur, B.2
-
2
-
-
0007299059
-
Dynamical zeta functions
-
Real and Complex Dynamical Systems (Hillerød, 1993), Kluwer Acad. Publ., Dordrecht
-
V. BALADI, Dynamical zeta functions, in Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 464, Kluwer Acad. Publ., Dordrecht, 1995.
-
(1995)
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
, vol.464
-
-
Baladi, V.1
-
3
-
-
0032622909
-
Connexions hétéroclines et généricité d'une infinité de puits et de sources
-
C. BONATTI and L. DIAZ, Connexions hétéroclines et généricité d'une infinité de puits et de sources, Ann. Sci. École Norm. Sup (4) 32 (1999), 135-150.
-
(1999)
Ann. Sci. École Norm. Sup (4)
, vol.32
, pp. 135-150
-
-
Bonatti, C.1
Diaz, L.2
-
4
-
-
0002371966
-
Rufus entropy and the fundamental group. The structure of attractors in dynamical systems
-
(Proc. Conf., North Dakota State Univ., Fargo, ND, 1977), Springer-Verlag, New York
-
R. BOWEN, Rufus entropy and the fundamental group. The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, ND, 1977), 21-29, Lectures Notes in Math. 668, Springer-Verlag, New York, 1978.
-
(1978)
Lectures Notes in Math.
, vol.668
, pp. 21-29
-
-
Bowen, R.1
-
5
-
-
0001356311
-
Persistence and smoothness of invariant manifolds for flows
-
N. FENICHEL, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971) 193-226.
-
(1971)
Indiana Univ. Math. J.
, vol.21
, pp. 193-226
-
-
Fenichel, N.1
-
7
-
-
43949172086
-
On models with non-rough Poincaré homoclinic curves
-
S. GONCHENKO, L. SHIL'NIKOV, and D. TUVAEV, On models with non-rough Poincaré homoclinic curves, Physica D 62 (1993), 1-14.
-
(1993)
Physica D
, vol.62
, pp. 1-14
-
-
Gonchenko, S.1
Shil'nikov, L.2
Tuvaev, D.3
-
8
-
-
84968476562
-
Topological properties of subanalytic sets
-
R. HARDT, Topological properties of subanalytic sets, Trans. A. M. S. 211 (1975) 57-70.
-
(1975)
Trans. A. M. S.
, vol.211
, pp. 57-70
-
-
Hardt, R.1
-
9
-
-
0003195540
-
Introduction to the modern theory of dynamical systems
-
Cambridge University Press, Cambridge
-
B. HASSELBLATT and A. KATOK, Introduction to the Modern Theory of Dynamical Systems, Encycl. of Math. and its Appl. 54, Cambridge University Press, Cambridge, 1995.
-
(1995)
Encycl. of Math. and its Appl.
, vol.54
-
-
Hasselblatt, B.1
Katok, A.2
-
10
-
-
0001441740
-
Invariant manifolds
-
Springer-Verlag, New York
-
M. HIRSCH, C. PUGH, and M. SHUB, Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, New York, 1977.
-
(1977)
Lecture Notes in Math.
, vol.583
-
-
Hirsch, M.1
Pugh, C.2
Shub, M.3
-
11
-
-
84967728280
-
Prevalence: A translation-invariant "almost every" on infinite dimensional spaces
-
Addendum: op. cit., 28 (1993), 306-307
-
B. HUNT, T. SAUER, and J. YORKE, Prevalence: a translation-invariant "almost every" on infinite dimensional spaces, Bull. A. M. S. (N.S.) 27 (1992), 217-238; Addendum: op. cit., 28 (1993), 306-307.
-
(1992)
Bull. A. M. S. (N.S.)
, vol.27
, pp. 217-238
-
-
Hunt, B.1
Sauer, T.2
Yorke, J.3
-
12
-
-
0003805590
-
-
W. H. Freeman and Co., San Francisco
-
N. JACOBSON, Basic Algebra, Vol. I, W. H. Freeman and Co., San Francisco, 1974.
-
(1974)
Basic Algebra
, vol.1
-
-
Jacobson, N.1
-
14
-
-
0009423765
-
Some prevalent properties of smooth dynamical systems
-
_, Some prevalent properties of smooth dynamical systems, Tr. Mat. Inst. Steklova 213 (1997), 123-151.
-
(1997)
Tr. Mat. Inst. Steklova
, vol.213
, pp. 123-151
-
-
-
16
-
-
32044475236
-
Diffeomorphisms with infinitely many sinks
-
S. NEWHOUSE, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18.
-
(1974)
Topology
, vol.13
, pp. 9-18
-
-
Newhouse, S.1
-
18
-
-
0009359961
-
Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: A conjecture of Palis
-
to appear
-
E. PUJALS and M. SAMBARINO, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: A conjecture of Palis, Ann. of Math., to appear.
-
Ann. of Math.
-
-
Pujals, E.1
Sambarino, M.2
-
20
-
-
0000154315
-
Bifurcation to infinitely many sinks
-
C. ROBINSON, Bifurcation to infinitely many sinks, Comm. Math. Phys. 90 (1983), 433-459.
-
(1983)
Comm. Math. Phys.
, vol.90
, pp. 433-459
-
-
Robinson, C.1
-
21
-
-
0002627818
-
On the growth in the number of periodic points of dynamical systems
-
É. ROSALES GONSALES, On the growth in the number of periodic points of dynamical systems, Funct. Anal. Appl. 25 (1991), 254-262.
-
(1991)
Funct. Anal. Appl.
, vol.25
, pp. 254-262
-
-
Rosales Gonsales, É.1
-
22
-
-
0001065397
-
A perturbation theorem for invariant manifolds and Hölder continuity
-
R. SACKER, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech. 18 (1969), 705-762.
-
(1969)
J. Math. Mech.
, vol.18
, pp. 705-762
-
-
Sacker, R.1
-
23
-
-
84929934885
-
-
Springer-Verlag, New York
-
I. R. SHAFAREVICH, Basic algebraic geometry, 1. Varieties in Projective Space, Second edition, Springer-Verlag, New York, 1994.
-
(1994)
Basic Algebraic Geometry, 1. Varieties in Projective Space, Second Edition
-
-
Shafarevich, I.R.1
-
24
-
-
84968514104
-
Differentiable dynamical systems
-
S. SMALE, Differentiable dynamical systems, Bull. A.M.S. 73 (1967), 747-817.
-
(1967)
Bull. A.M.S.
, vol.73
, pp. 747-817
-
-
Smale, S.1
-
25
-
-
0003178980
-
3) and the nongenericity of rational zeta functions
-
3) and the nongenericity of rational zeta functions, Trans. A.M.S. 174 (1972), 217-242.
-
(1972)
Trans. A.M.S.
, vol.174
, pp. 217-242
-
-
Simon, C.1
-
26
-
-
0000462372
-
How often do simple dynamical processes have infinitely many coexisting sinks?
-
L. TEDESCHINI-LALLI and J. A. YORKE, How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986), 635-657.
-
(1986)
Comm. Math. Phys.
, vol.106
, pp. 635-657
-
-
Tedeschini-Lalli, L.1
Yorke, J.A.2
-
27
-
-
0004273058
-
-
Frederick Ungar Publishing Co. New York
-
B. L. VAN DER WAERDEN, Modern Algebra, vol. I, Frederick Ungar Publishing Co. New York, 1949.
-
(1949)
Modern Algebra
, vol.1
-
-
Van Der Waerden, B.L.1
|