메뉴 건너뛰기




Volumn 150, Issue 2, 1999, Pages 729-741

An extension of the Artin-Mazur theorem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033235416     PISSN: 0003486X     EISSN: None     Source Type: Journal    
DOI: 10.2307/121093     Document Type: Article
Times cited : (43)

References (27)
  • 1
    • 0002869924 scopus 로고
    • On periodic orbits
    • M. ARTIN and B. MAZUR, On periodic orbits, Ann. of Math. 81 (1965), 82-99.
    • (1965) Ann. of Math. , vol.81 , pp. 82-99
    • Artin, M.1    Mazur, B.2
  • 2
    • 0007299059 scopus 로고
    • Dynamical zeta functions
    • Real and Complex Dynamical Systems (Hillerød, 1993), Kluwer Acad. Publ., Dordrecht
    • V. BALADI, Dynamical zeta functions, in Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 464, Kluwer Acad. Publ., Dordrecht, 1995.
    • (1995) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. , vol.464
    • Baladi, V.1
  • 3
    • 0032622909 scopus 로고    scopus 로고
    • Connexions hétéroclines et généricité d'une infinité de puits et de sources
    • C. BONATTI and L. DIAZ, Connexions hétéroclines et généricité d'une infinité de puits et de sources, Ann. Sci. École Norm. Sup (4) 32 (1999), 135-150.
    • (1999) Ann. Sci. École Norm. Sup (4) , vol.32 , pp. 135-150
    • Bonatti, C.1    Diaz, L.2
  • 4
    • 0002371966 scopus 로고
    • Rufus entropy and the fundamental group. The structure of attractors in dynamical systems
    • (Proc. Conf., North Dakota State Univ., Fargo, ND, 1977), Springer-Verlag, New York
    • R. BOWEN, Rufus entropy and the fundamental group. The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, ND, 1977), 21-29, Lectures Notes in Math. 668, Springer-Verlag, New York, 1978.
    • (1978) Lectures Notes in Math. , vol.668 , pp. 21-29
    • Bowen, R.1
  • 5
    • 0001356311 scopus 로고
    • Persistence and smoothness of invariant manifolds for flows
    • N. FENICHEL, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971) 193-226.
    • (1971) Indiana Univ. Math. J. , vol.21 , pp. 193-226
    • Fenichel, N.1
  • 7
    • 43949172086 scopus 로고
    • On models with non-rough Poincaré homoclinic curves
    • S. GONCHENKO, L. SHIL'NIKOV, and D. TUVAEV, On models with non-rough Poincaré homoclinic curves, Physica D 62 (1993), 1-14.
    • (1993) Physica D , vol.62 , pp. 1-14
    • Gonchenko, S.1    Shil'nikov, L.2    Tuvaev, D.3
  • 8
    • 84968476562 scopus 로고
    • Topological properties of subanalytic sets
    • R. HARDT, Topological properties of subanalytic sets, Trans. A. M. S. 211 (1975) 57-70.
    • (1975) Trans. A. M. S. , vol.211 , pp. 57-70
    • Hardt, R.1
  • 9
    • 0003195540 scopus 로고
    • Introduction to the modern theory of dynamical systems
    • Cambridge University Press, Cambridge
    • B. HASSELBLATT and A. KATOK, Introduction to the Modern Theory of Dynamical Systems, Encycl. of Math. and its Appl. 54, Cambridge University Press, Cambridge, 1995.
    • (1995) Encycl. of Math. and its Appl. , vol.54
    • Hasselblatt, B.1    Katok, A.2
  • 11
    • 84967728280 scopus 로고
    • Prevalence: A translation-invariant "almost every" on infinite dimensional spaces
    • Addendum: op. cit., 28 (1993), 306-307
    • B. HUNT, T. SAUER, and J. YORKE, Prevalence: a translation-invariant "almost every" on infinite dimensional spaces, Bull. A. M. S. (N.S.) 27 (1992), 217-238; Addendum: op. cit., 28 (1993), 306-307.
    • (1992) Bull. A. M. S. (N.S.) , vol.27 , pp. 217-238
    • Hunt, B.1    Sauer, T.2    Yorke, J.3
  • 12
    • 0003805590 scopus 로고
    • W. H. Freeman and Co., San Francisco
    • N. JACOBSON, Basic Algebra, Vol. I, W. H. Freeman and Co., San Francisco, 1974.
    • (1974) Basic Algebra , vol.1
    • Jacobson, N.1
  • 14
    • 0009423765 scopus 로고    scopus 로고
    • Some prevalent properties of smooth dynamical systems
    • _, Some prevalent properties of smooth dynamical systems, Tr. Mat. Inst. Steklova 213 (1997), 123-151.
    • (1997) Tr. Mat. Inst. Steklova , vol.213 , pp. 123-151
  • 16
    • 32044475236 scopus 로고
    • Diffeomorphisms with infinitely many sinks
    • S. NEWHOUSE, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18.
    • (1974) Topology , vol.13 , pp. 9-18
    • Newhouse, S.1
  • 18
    • 0009359961 scopus 로고    scopus 로고
    • Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: A conjecture of Palis
    • to appear
    • E. PUJALS and M. SAMBARINO, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: A conjecture of Palis, Ann. of Math., to appear.
    • Ann. of Math.
    • Pujals, E.1    Sambarino, M.2
  • 20
    • 0000154315 scopus 로고
    • Bifurcation to infinitely many sinks
    • C. ROBINSON, Bifurcation to infinitely many sinks, Comm. Math. Phys. 90 (1983), 433-459.
    • (1983) Comm. Math. Phys. , vol.90 , pp. 433-459
    • Robinson, C.1
  • 21
    • 0002627818 scopus 로고
    • On the growth in the number of periodic points of dynamical systems
    • É. ROSALES GONSALES, On the growth in the number of periodic points of dynamical systems, Funct. Anal. Appl. 25 (1991), 254-262.
    • (1991) Funct. Anal. Appl. , vol.25 , pp. 254-262
    • Rosales Gonsales, É.1
  • 22
    • 0001065397 scopus 로고
    • A perturbation theorem for invariant manifolds and Hölder continuity
    • R. SACKER, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech. 18 (1969), 705-762.
    • (1969) J. Math. Mech. , vol.18 , pp. 705-762
    • Sacker, R.1
  • 24
    • 84968514104 scopus 로고
    • Differentiable dynamical systems
    • S. SMALE, Differentiable dynamical systems, Bull. A.M.S. 73 (1967), 747-817.
    • (1967) Bull. A.M.S. , vol.73 , pp. 747-817
    • Smale, S.1
  • 25
    • 0003178980 scopus 로고
    • 3) and the nongenericity of rational zeta functions
    • 3) and the nongenericity of rational zeta functions, Trans. A.M.S. 174 (1972), 217-242.
    • (1972) Trans. A.M.S. , vol.174 , pp. 217-242
    • Simon, C.1
  • 26
    • 0000462372 scopus 로고
    • How often do simple dynamical processes have infinitely many coexisting sinks?
    • L. TEDESCHINI-LALLI and J. A. YORKE, How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986), 635-657.
    • (1986) Comm. Math. Phys. , vol.106 , pp. 635-657
    • Tedeschini-Lalli, L.1    Yorke, J.A.2
  • 27
    • 0004273058 scopus 로고
    • Frederick Ungar Publishing Co. New York
    • B. L. VAN DER WAERDEN, Modern Algebra, vol. I, Frederick Ungar Publishing Co. New York, 1949.
    • (1949) Modern Algebra , vol.1
    • Van Der Waerden, B.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.