-
5
-
-
0000109642
-
Properties of the S matrix of the one-dimensional Schrödinger equation
-
5. Faddeev, L.D.: Properties of the S matrix of the one-dimensional Schrödinger equation: Trudy Math. Inst. Steklov 73, 314-333 (1964)
-
(1964)
Trudy Math. Inst. Steklov
, vol.73
, pp. 314-333
-
-
Faddeev, L.D.1
-
8
-
-
0001649173
-
-
English translation
-
[English translation J. Soviet Math. 5, 334-396 (1976)]
-
(1976)
J. Soviet Math.
, vol.5
, pp. 334-396
-
-
-
9
-
-
58149363006
-
Generalized Strichartz inequalities for the wave equation
-
7. Ginibre, J., Velo G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Analysis 133, 50-68 (1995)
-
(1995)
J. Funct. Analysis
, vol.133
, pp. 50-68
-
-
Ginibre, J.1
Velo, G.2
-
11
-
-
0003216788
-
Lectures on Nonlinear Hyperbolic Differential Equations
-
Berlin: Springer-Verlag
-
9. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications 26, Berlin: Springer-Verlag, 1997
-
(1997)
Mathématiques & Applications
, vol.26
-
-
Hörmander, L.1
-
12
-
-
0000324005
-
p-spaces and Besov spaces
-
Yajima, K. (ed.)
-
p-spaces and Besov spaces. In: Yajima, K. (ed.), Spectral and Scattering Theory and Applications. Tokyo: Adv. Stud. Pure Appl. Math. 23, Math. Soc. Japan, 1994 pp. 187-209
-
(1994)
Spectral and Scattering Theory and Applications. Tokyo: Adv. Stud. Pure Appl. Math. 23, Math. Soc. Japan
, vol.23
, pp. 187-209
-
-
Jensen, A.1
Nakamura, G.2
-
13
-
-
84972548457
-
p-mapping properties of functions of Schrödinger operators and their applications to scattering theory
-
p-mapping properties of functions of Schrödinger operators and their applications to scattering theory. J. Math. Soc. Japan 47, 253-273 (1995)
-
(1995)
J. Math. Soc. Japan
, vol.47
, pp. 253-273
-
-
Jensen, A.1
Nakamura, G.2
-
14
-
-
0000818765
-
Nonlinear Schrödinger equations
-
Holden, H., Jensen, A. (eds.), Berlin: Springer-Verlag
-
12. Kato, T.: Nonlinear Schrödinger equations. In: Holden, H., Jensen, A. (eds.), Schrödinger Operators. Lecture Notes in Physics 345, Berlin: Springer-Verlag, 1989, pp. 218-263
-
(1989)
Schrödinger Operators. Lecture Notes in Physics
, vol.345
, pp. 218-263
-
-
Kato, T.1
-
15
-
-
0000959853
-
Low-energy behaviour of the scattering matrix for the Schrödinger equation on the line
-
13. Klaus, M.: Low-energy behaviour of the scattering matrix for the Schrödinger equation on the line. Inverse Problems 4, 505-512 (1988)
-
(1988)
Inverse Problems
, vol.4
, pp. 505-512
-
-
Klaus, M.1
-
17
-
-
0000936941
-
Low energy scattering for medium range potentials
-
15. Newton, R., G.: Low energy scattering for medium range potentials. J. Math. Phys. 27, 2720-2730 (1986)
-
(1986)
J. Math. Phys.
, vol.27
, pp. 2720-2730
-
-
Newton, R.G.1
-
18
-
-
0004072884
-
Lectures in Nonlinear Evolution Equations. Initial Value Problems
-
Braunschweig-Wiesbaden: F. Vieweg & Son
-
16. Racke, R.: Lectures in Nonlinear Evolution Equations. Initial Value Problems. Aspects of Mathematics E 19, Braunschweig-Wiesbaden: F. Vieweg & Son, 1992
-
(1992)
Aspects of Mathematics E
, vol.19
-
-
Racke, R.1
-
22
-
-
0003353148
-
Nonlinear Wave Equations
-
Providence, RI: American Mathematical Society
-
20. Strauss, W.A.: Nonlinear Wave Equations. CBMS-RCSM 73, Providence, RI: American Mathematical Society, 1989
-
(1989)
Cbms-rcsm
, vol.73
-
-
Strauss, W.A.1
-
24
-
-
84972553620
-
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations
-
22. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705-714 (1977)
-
(1977)
Duke Math. J.
, vol.44
, pp. 705-714
-
-
Strichartz, R.S.1
-
26
-
-
0001872603
-
Inverse scattering for the nonlinear Schrödinger equation
-
24. Weder, R.: Inverse scattering for the nonlinear Schrödinger equation. Commun. Part. Diff. Equations 22, 2089-2103 (1997)
-
(1997)
Commun. Part. Diff. Equations
, vol.22
, pp. 2089-2103
-
-
Weder, R.1
-
27
-
-
0008987459
-
ṕ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential
-
Preprint
-
ṕ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. Preprint 1998. To appear in J. Funct. Analysis
-
(1998)
J. Funct. Analysis
-
-
Weder, R.1
-
28
-
-
0002260691
-
Spectral Theory of Ordinary Differential Operators
-
Berlin: Springer-Verlag
-
26. Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics 1258, Berlin: Springer-Verlag, 1987
-
(1987)
Lecture Notes in Mathematics
, vol.1258
-
-
Weidmann, J.1
-
29
-
-
0021538470
-
Sound Propagation in Stratified Fluids
-
Berlin-Heidelberg-New York: Springer-Verlag
-
27. Wilcox, C.H.: Sound Propagation in Stratified Fluids. Applied Mathematical Sciences 50, Berlin-Heidelberg-New York: Springer-Verlag, 1984
-
(1984)
Applied Mathematical Sciences
, vol.50
-
-
Wilcox, C.H.1
-
30
-
-
0002820736
-
k,p-continuity of wave operators for Schrödinger operators
-
k,p-continuity of wave operators for Schrödinger operators. Proc. Japan Acad. 69, Ser. A. 94-98 (1993)
-
(1993)
Proc. Japan Acad.
, vol.69
, Issue.SER. A
, pp. 94-98
-
-
Yajima, K.1
-
31
-
-
84972559697
-
k,p-continuity of wave operators for Schrödinger operators
-
k,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551-581 (1995)
-
(1995)
J. Math. Soc. Japan
, vol.47
, pp. 551-581
-
-
Yajima, K.1
-
32
-
-
0009037488
-
k,p-continuity of wave operators for Schrödinger operators. II. Positive potentials in even dimensions m ≥ 4
-
Ikawa, M. (ed.), New York: Dekker
-
k,p-continuity of wave operators for Schrödinger operators. II. Positive potentials in even dimensions m ≥ 4. In: Ikawa, M. (ed.), Spectral and Scattering Theory (Sanda 1992), Lecture Notes in Pure and Applied Mathematics 161, New York: Dekker 1994, pp. 287-300
-
(1994)
Spectral and Scattering Theory (Sanda 1992), Lecture Notes in Pure and Applied Mathematics
, vol.161
, pp. 287-300
-
-
Yajima, K.1
-
33
-
-
0001604108
-
k,p-continuity of wave operators for Schrödinger operators. III. Even-dimensional cases m ≥ 4
-
k,p-continuity of wave operators for Schrödinger operators. III. Even-dimensional cases m ≥ 4. J. Math. Sci. Univ. Tokyo 2, 311-346 (1995)
-
(1995)
J. Math. Sci. Univ. Tokyo
, vol.2
, pp. 311-346
-
-
Yajima, K.1
|