메뉴 건너뛰기




Volumn 38, Issue 7, 1999, Pages 65-79

General solutions of a three-level partial difference equation

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENCE EQUATIONS; GREEN'S FUNCTION; INITIAL VALUE PROBLEMS; LINEAR EQUATIONS; STABILITY CRITERIA;

EID: 0033204419     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0898-1221(99)00239-4     Document Type: Article
Times cited : (15)

References (6)
  • 2
    • 0032021033 scopus 로고    scopus 로고
    • Green's function and stability of a linear partial difference scheme
    • S.S. Cheng and G.H. Lin, Green's function and stability of a linear partial difference scheme, Computers Math. Applic. 35 (5), 27-41, (1998).
    • (1998) Computers Math. Applic. , vol.35 , Issue.5 , pp. 27-41
    • Cheng, S.S.1    Lin, G.H.2
  • 3
    • 0030261009 scopus 로고    scopus 로고
    • Stability criteria for two partial difference equations
    • Y.Z. Lin and S.S. Cheng, Stability criteria for two partial difference equations, Computers Math. Applic. 32 (7), 87-103, (1996).
    • (1996) Computers Math. Applic. , vol.32 , Issue.7 , pp. 87-103
    • Lin, Y.Z.1    Cheng, S.S.2
  • 4
    • 0000266693 scopus 로고
    • Green's functions for the finite difference heat, Laplace and wave equations
    • Birkhäuser Verlag, Basel
    • D.H. Mugler, Green's functions for the finite difference heat, Laplace and wave equations, In International Series of Numerical Mathematics, Vol. 65, pp. 543-553, Birkhäuser Verlag, Basel, (1984).
    • (1984) International Series of Numerical Mathematics , vol.65 , pp. 543-553
    • Mugler, D.H.1
  • 5
    • 0003125359 scopus 로고
    • Explicit solutions of partial difference equations and random paths on plane nets
    • E.M. Keberle and G.L. Montet, Explicit solutions of partial difference equations and random paths on plane nets, J. Math. Anal. Appl. 6, 1-32, (1963).
    • (1963) J. Math. Anal. Appl. , vol.6 , pp. 1-32
    • Keberle, E.M.1    Montet, G.L.2
  • 6
    • 0023831797 scopus 로고
    • Fast fourier transform method for partial differential equations, case study: The 2-D diffusion equation
    • D.H. Mugler and R.A. Scott, Fast fourier transform method for partial differential equations, case study: The 2-D diffusion equation, Computers Math. Applic. 16 (3), 221-228, (1988).
    • (1988) Computers Math. Applic. , vol.16 , Issue.3 , pp. 221-228
    • Mugler, D.H.1    Scott, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.