메뉴 건너뛰기




Volumn E82-A, Issue 9, 1999, Pages 1825-1832

Competitive learning methods with refractory and creative approaches

Author keywords

Competitive learning; Creating mechanism; Neural networks; Refractory period; Vector quantization

Indexed keywords

COMPETITIVE LEARNING;

EID: 0033184716     PISSN: 09168508     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (13)

References (20)
  • 1
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal receding: I. Parallel development and coding of neural feature detectors
    • S. Grossberg, Adaptive pattern classification and universal receding: I. Parallel development and coding of neural feature detectors, Biol. Cybern., vol.23, pp.121-134, 1976.
    • (1976) Biol. Cybern. , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 2
    • 0017166860 scopus 로고
    • How patterned neural connections can be set up by self-organization
    • D.J. Willshaw and C. von der Malsburg, How patterned neural connections can be set up by self-organization, Proc. R. Soc. Lond. B., vol.194, pp.431-445, 1976.
    • (1976) Proc. R. Soc. Lond. B. , vol.194 , pp. 431-445
    • Willshaw, D.J.1    Von Der Malsburg, C.2
  • 4
    • 0018918171 scopus 로고
    • An algorithm for vector quantizer design
    • Y. Linde, A. Buzo, and R.M. Gray, An algorithm for vector quantizer design, IEEE Trans. Commun., vol.28, pp.84-95, 1980.
    • (1980) IEEE Trans. Commun. , vol.28 , pp. 84-95
    • Linde, Y.1    Buzo, A.2    Gray, R.M.3
  • 6
    • 0028464807 scopus 로고
    • Self-creating and organizing neural networks
    • D.-I. Choi and S.-H. Park, Self-creating and organizing neural networks, IEEE Trans. Neural Networks, vol.5, pp.561-575, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 561-575
    • Choi, D.-I.1    Park, S.-H.2
  • 7
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • T.M. Martinetz, S.G. Berkovich, and K.J. Schulten, Neural-gas network for vector quantization and its application to time-series prediction, IEEE Trans. Neural Networks, vol.4, pp.558-569, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 8
    • 0030289064 scopus 로고    scopus 로고
    • An adaptive learning and self-deleting neural network for vector quantization
    • Nov.
    • M. Maeda, H. Miyajima, and S. Murashima, An adaptive learning and self-deleting neural network for vector quantization, IEICE Trans. Fundamentals, vol.E79-A, no.11, pp. 1886-1893, Nov. 1996.
    • (1996) IEICE Trans. Fundamentals , vol.E79-A , Issue.11 , pp. 1886-1893
    • Maeda, M.1    Miyajima, H.2    Murashima, S.3
  • 9
    • 33746604010 scopus 로고    scopus 로고
    • Construction of self-organizing algorithms for vector quantization
    • M. Maeda, H. Miyajima, and S. Murashima, Construction of self-organizing algorithms for vector quantization, T.IEE Japan, vol.117-C, pp.1084-1091, 1997.
    • (1997) T.IEE Japan , vol.117 C , pp. 1084-1091
    • Maeda, M.1    Miyajima, H.2    Murashima, S.3
  • 11
    • 4944243837 scopus 로고
    • Competitive and selective learning method for vector quantizer design: Equidistortion principle and its algorithm
    • Nov.
    • N. Ueda and R. Nakano, Competitive and selective learning method for vector quantizer design: Equidistortion principle and its algorithm, IEICE Trans., vol.J77-D-II, no.11, pp.2265-2278, Nov. 1994.
    • (1994) IEICE Trans. , vol.J77-D-II , Issue.11 , pp. 2265-2278
    • Ueda, N.1    Nakano, R.2
  • 12
    • 0018845170 scopus 로고
    • Asymptotic performance of block quantizers with difference distortion measures
    • Y. Yamada, S. Tazaki, and R. Gray, Asymptotic performance of block quantizers with difference distortion measures, IEEE Trans. Inform. Theory, vol.26, pp.6-14, 1980.
    • (1980) IEEE Trans. Inform. Theory , vol.26 , pp. 6-14
    • Yamada, Y.1    Tazaki, S.2    Gray, R.3
  • 13
    • 0020100081 scopus 로고
    • Asymptotic quantization error of continuous signals and the quantization dimension
    • P.L. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory, vol.28, pp. 139-149, 1982.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , pp. 139-149
    • Zador, P.L.1
  • 14
    • 0002961288 scopus 로고
    • On the stationary state of Kohonen's self-organizing sensory mapping
    • H. Ritter and K. Schulten, On the stationary state of Kohonen's self-organizing sensory mapping, Biol. Cybern., vol.54, pp.99-106, 1986.
    • (1986) Biol. Cybern. , vol.54 , pp. 99-106
    • Ritter, H.1    Schulten, K.2
  • 15
    • 34250092740 scopus 로고
    • Convergence properties of Kohonen's topology conserving maps: Fluctuations, stability, and dimension selection
    • H. Ritter and K. Schulten, Convergence properties of Kohonen's topology conserving maps: Fluctuations, stability, and dimension selection, Biol. Cybern., vol.60, pp.59-71, 1988.
    • (1988) Biol. Cybern. , vol.60 , pp. 59-71
    • Ritter, H.1    Schulten, K.2
  • 16
    • 4944255608 scopus 로고
    • Quantitative properties of Kohonen's self-organizing maps as adaptive vector quantizers
    • Jun.
    • T. Tanaka and M. Saito, Quantitative properties of Kohonen's self-organizing maps as adaptive vector quantizers, IEICE Trans., vol.J75-D-II, no.6, pp.1085-1092, Jun. 1992.
    • (1992) IEICE Trans. , vol.J75-D-II , Issue.6 , pp. 1085-1092
    • Tanaka, T.1    Saito, M.2
  • 19
  • 20
    • 0005308332 scopus 로고
    • A large scale neural network CombNET-II
    • March
    • K. Hotta, A. Iwata, H. Matsuo, and N. Suzumura, A large scale neural network CombNET-II, IEICE Trans., Vol.J75-D-II, no.3, pp.545-553, March 1992.
    • (1992) IEICE Trans. , vol.J75-D-II , Issue.3 , pp. 545-553
    • Hotta, K.1    Iwata, A.2    Matsuo, H.3    Suzumura, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.