-
1
-
-
0005235678
-
A topological invariant arising in the analysis of traveling waves
-
Alexander J., Gardner R., Jones C. K. R. T. A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410:1990;167-212.
-
(1990)
J. Reine Angew. Math.
, vol.410
, pp. 167-212
-
-
Alexander, J.1
Gardner, R.2
Jones, C.K.R.T.3
-
4
-
-
0001472248
-
Nerve axon equations. I. Linear approximations
-
Evans J. W. Nerve axon equations. I. Linear approximations. Indiana Univ. Math. J. 21:1972;877-885.
-
(1972)
Indiana Univ. Math. J.
, vol.21
, pp. 877-885
-
-
Evans, J.W.1
-
5
-
-
0001472247
-
Nerve axon equations. II. Stability at rest
-
Evans J. W. Nerve axon equations. II. Stability at rest. Indiana Univ. Math. J. 22:1972;75-90.
-
(1972)
Indiana Univ. Math. J.
, vol.22
, pp. 75-90
-
-
Evans, J.W.1
-
6
-
-
0001472246
-
Nerve axon equations. III. Stability of the nerve impulse
-
Evans J. W. Nerve axon equations. III. Stability of the nerve impulse. Indiana Univ. Math. J. 22:1972;577-594.
-
(1972)
Indiana Univ. Math. J.
, vol.22
, pp. 577-594
-
-
Evans, J.W.1
-
7
-
-
0016578299
-
Nerve axon equations. IV. The stable and unstable impulse
-
Evans J. W. Nerve axon equations. IV. The stable and unstable impulse. Indiana Univ. Math. J. 24:1975;1169-1190.
-
(1975)
Indiana Univ. Math. J.
, vol.24
, pp. 1169-1190
-
-
Evans, J.W.1
-
9
-
-
0022865466
-
Nonlinear asymptotic stability of viscous shock profiles for conservation laws
-
Goodman J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95:1986;325-344.
-
(1986)
Arch. Rational Mech. Anal.
, vol.95
, pp. 325-344
-
-
Goodman, J.1
-
10
-
-
0009377144
-
Explicit time-dependent Schrödinger propagators
-
Gaveau B., Schulman S. Explicit time-dependent Schrödinger propagators. J. Phys. A Math. Gen. 19:1986;1833-1846.
-
(1986)
J. Phys. A Math. Gen.
, vol.19
, pp. 1833-1846
-
-
Gaveau, B.1
Schulman, S.2
-
11
-
-
0040942605
-
The Gap Lemma and geometric criteria for instability of viscous shock waves
-
Gardner R., Zumbrun K. The Gap Lemma and geometric criteria for instability of viscous shock waves. Comm. Pure Appl. Math. 51:1998;789-847.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 789-847
-
-
Gardner, R.1
Zumbrun, K.2
-
13
-
-
85034171041
-
Pointwise Green's function approach to stability for scalar conservation laws
-
to appear.
-
P. Howard, Pointwise Green's function approach to stability for scalar conservation laws, Comm. Pure Appl. Math, to appear.
-
Comm. Pure Appl. Math
-
-
Howard, P.1
-
15
-
-
0000591519
-
Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow
-
Hoff D., Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44:1995;603-675.
-
(1995)
Indiana Univ. Math. J.
, vol.44
, pp. 603-675
-
-
Hoff, D.1
Zumbrun, K.2
-
16
-
-
0031513195
-
Pointwise decay estimates for mulidimensional Navier-Stokes diffusion waves
-
Hoff D., Zumbrun K. Pointwise decay estimates for mulidimensional Navier-Stokes diffusion waves. Z. Angew. Math. Phys. 48:1997;597-614.
-
(1997)
Z. Angew. Math. Phys.
, vol.48
, pp. 597-614
-
-
Hoff, D.1
Zumbrun, K.2
-
17
-
-
84967743294
-
Stability of the traveling wave solution of the FitzHugh-Nagumo system
-
Jones C. K. R. T. Stability of the traveling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc. 286:1984;431-469.
-
(1984)
Trans. Amer. Math. Soc.
, vol.286
, pp. 431-469
-
-
Jones, C.K.R.T.1
-
18
-
-
84990556253
-
Stability of travelling waves for nonconvex scalar viscous conservation laws
-
Jones C. K. R. T., Gardner R., Kapitula T. Stability of travelling waves for nonconvex scalar viscous conservation laws. Comm. Pure Appl. Math. 46:1993;505-526.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, pp. 505-526
-
-
Jones, C.K.R.T.1
Gardner, R.2
Kapitula, T.3
-
21
-
-
84968504658
-
Nonlinear stability of shock waves for viscous conservation laws
-
Liu T. P. Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56:1985.
-
(1985)
Mem. Amer. Math. Soc.
, vol.56
-
-
Liu, T.P.1
-
22
-
-
0002845226
-
Interaction of nonlinear hyperbolic waves
-
F. C. Liu, & T. P. Liu. Singapore: World Scientific
-
Liu T. P. Interaction of nonlinear hyperbolic waves. Liu F. C., Liu T. P. Nonlinear Analysis. 1991;171-184 World Scientific, Singapore.
-
(1991)
Nonlinear Analysis
, pp. 171-184
-
-
Liu, T.P.1
-
23
-
-
0031531481
-
Pointwise convergence to shock waves for the system of viscous conservation laws
-
Liu T. P. Pointwise convergence to shock waves for the system of viscous conservation laws. Comm. Pure Appl. Math. 50:1997;1113-1182.
-
(1997)
Comm. Pure Appl. Math.
, vol.50
, pp. 1113-1182
-
-
Liu, T.P.1
-
24
-
-
0030642440
-
Large time behavior of solutions of general quasilinear hyperbolic-parabolic systems of conservation laws
-
Liu T. P., Zeng Y. Large time behavior of solutions of general quasilinear hyperbolic-parabolic systems of conservation laws. Mem. Amer. Math. Soc. 599:1997.
-
(1997)
Mem. Amer. Math. Soc.
, vol.599
-
-
Liu, T.P.1
Zeng, Y.2
-
25
-
-
21844524592
-
Nonlinear stability of an undercompressive shock of complex Burgers equation
-
Liu T. P., Zumbrun K. Nonlinear stability of an undercompressive shock of complex Burgers equation. Comm. Math Phys. 168:1995;163-186.
-
(1995)
Comm. Math Phys.
, vol.168
, pp. 163-186
-
-
Liu, T.P.1
Zumbrun, K.2
-
26
-
-
0041127884
-
On nonlinear stability of general undercompressive viscous shock waves
-
Liu T. P., Zumbrun K. On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174:1995;319-345.
-
(1995)
Comm. Math. Phys.
, vol.174
, pp. 319-345
-
-
Liu, T.P.1
Zumbrun, K.2
-
27
-
-
21844512198
-
Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex linearity
-
Matsumura A., Nishihara K. Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex linearity. Comm. Math. Phys. 165:1994;83-96.
-
(1994)
Comm. Math. Phys.
, vol.165
, pp. 83-96
-
-
Matsumura, A.1
Nishihara, K.2
-
28
-
-
0000158254
-
Stability of traveling waves with degenerate shock for systems of one-dimensional viscoelastic model
-
Nishihara K. Stability of traveling waves with degenerate shock for systems of one-dimensional viscoelastic model. J. Differential Equations. 120:1995;304-318.
-
(1995)
J. Differential Equations
, vol.120
, pp. 304-318
-
-
Nishihara, K.1
-
29
-
-
0000814275
-
On the stability of waves of nonlinear parabolic systems
-
Sattinger D. On the stability of waves of nonlinear parabolic systems. Adv. Math. 22:1976;312-355.
-
(1976)
Adv. Math.
, vol.22
, pp. 312-355
-
-
Sattinger, D.1
-
30
-
-
21144471868
-
Nonlinear stability of viscous shock waves
-
Szepessy A., Xin Z. Nonlinear stability of viscous shock waves. Arch. Rational Mech. Anal. 122:1993;53-103.
-
(1993)
Arch. Rational Mech. Anal.
, vol.122
, pp. 53-103
-
-
Szepessy, A.1
Xin, Z.2
-
31
-
-
0030533740
-
Stability of rarefaction waves in viscous media
-
Szepessy A., Zumbrun K. Stability of rarefaction waves in viscous media. Arch. Rational Mech. Anal. 133:1996;249-298.
-
(1996)
Arch. Rational Mech. Anal.
, vol.133
, pp. 249-298
-
-
Szepessy, A.1
Zumbrun, K.2
-
33
-
-
84990671435
-
1 asymptotic behavior of compressible, isentropic, viscous 1d flow
-
1 asymptotic behavior of compressible, isentropic, viscous 1d flow. Comm. Pure Appl. Math. 47:1994;1053-1092.
-
(1994)
Comm. Pure Appl. Math.
, vol.47
, pp. 1053-1092
-
-
Zeng, Y.1
-
34
-
-
0009378734
-
Pointwise semigroup methods for and stability of viscous shock waves
-
Zumbrun K., Howard P. Pointwise semigroup methods for and stability of viscous shock waves. Indiana Univ. Math. J. 47:1998.
-
(1998)
Indiana Univ. Math. J.
, vol.47
-
-
Zumbrun, K.1
Howard, P.2
|