-
1
-
-
0002211598
-
Nonnormal multivariate distributions: Inference based on elliptical contoured distributions
-
C. R. Rao, Ed., Elsevier, Amsterdam
-
1. T. W. Anderson, Nonnormal multivariate distributions: inference based on elliptical contoured distributions, in "Multivariate Analysis: Future Directions" (C. R. Rao, Ed.), pp. 1-24, Elsevier, Amsterdam, 1993.
-
(1993)
Multivariate Analysis: Future Directions
, pp. 1-24
-
-
Anderson, T.W.1
-
2
-
-
0002240143
-
On the theory of multivariate elliptically contoured distributions and their applications
-
K. T. Fang and T. W. Anderson, Eds., Allerton Press, New York
-
2. T. W. Anderson and K. T. Fang, On the theory of multivariate elliptically contoured distributions and their applications, in "Statistical Inference in Elliptically Contoured and Related Distributions" (K. T. Fang and T. W. Anderson, Eds.), pp. 1-24, Allerton Press, New York, 1990a.
-
(1990)
Statistical Inference in Elliptically Contoured and Related Distributions
, pp. 1-24
-
-
Anderson, T.W.1
Fang, K.T.2
-
3
-
-
0000181629
-
Inference in multivariate elliptically contoured distributions based on maximum likelihood
-
K. T. Fang and T. W. Anderson, Eds., Allerton Press, New York
-
3. T. W. Anderson and K. T. Fang, Inference in multivariate elliptically contoured distributions based on maximum likelihood, in "Statistical Inference in Elliptically Contoured and Related Distributions" (K. T. Fang and T. W. Anderson, Eds.), pp. 201-216, Allerton Press, New York, 1990b.
-
(1990)
Statistical Inference in Elliptically Contoured and Related Distributions
, pp. 201-216
-
-
Anderson, T.W.1
Fang, K.T.2
-
5
-
-
0000023055
-
Posterior inference on the degrees of freedom parameter in multivariate-t regression models
-
5. S. Chib, J. Osiewalski, and M. F. J. Steel, Posterior inference on the degrees of freedom parameter in multivariate-t regression models, Econom. Lett. 37 (1991), 391-397.
-
(1991)
Econom. Lett.
, vol.37
, pp. 391-397
-
-
Chib, S.1
Osiewalski, J.2
Steel, M.F.J.3
-
6
-
-
0001250024
-
Bayes prediction in regressions with elliptical errors
-
6. S. Chib, R. C. Tiwari, and S. R. Jammalamadaka, Bayes prediction in regressions with elliptical errors, J. Econometrics 38 (1988), 349-360.
-
(1988)
J. Econometrics
, vol.38
, pp. 349-360
-
-
Chib, S.1
Tiwari, R.C.2
Jammalamadaka, S.R.3
-
7
-
-
0000235196
-
Spherical matrix distributions and a multivariate model
-
7. A. P. Dawid, Spherical matrix distributions and a multivariate model, J. Roy. Statist. Soc. Ser. B 39 (1977), 254-261.
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, pp. 254-261
-
-
Dawid, A.P.1
-
8
-
-
0000752425
-
Estimation of covariance matrix under Stein's loss
-
8. D. K. Dey and C. Srinivasan, Estimation of covariance matrix under Stein's loss, Ann. Statist. 13 (1985), 1581-1591.
-
(1985)
Ann. Statist.
, vol.13
, pp. 1581-1591
-
-
Dey, D.K.1
Srinivasan, C.2
-
9
-
-
0003907281
-
-
Chapman & Hall, London
-
9. K. T. Fang, S. Kotz, and K. W. Ng, "Symmetric Multivariate and Related Distributions," Chapman & Hall, London, 1989.
-
(1989)
Symmetric Multivariate and Related Distributions
-
-
Fang, K.T.1
Kotz, S.2
Ng, K.W.3
-
11
-
-
0004243060
-
-
Springer-Verlag, Berlin, and Science Press, Beijing
-
11. K. T. Fang and Y. T. Zhang, "Generalized Multivariate Analysis," Springer-Verlag, Berlin, and Science Press, Beijing, 1990.
-
(1990)
Generalized Multivariate Analysis
-
-
Fang, K.T.1
Zhang, Y.T.2
-
12
-
-
0009220295
-
The continuous multivariate location-scale model revisited: A tale of robustness
-
12. C. Fernández, J. Osiewalski, and M. F. J. Steel, The continuous multivariate location-scale model revisited: A tale of robustness, Biometrika 81 (1994), 588-594.
-
(1994)
Biometrika
, vol.81
, pp. 588-594
-
-
Fernández, C.1
Osiewalski, J.2
Steel, M.F.J.3
-
13
-
-
0000406169
-
Empirical Bayes estimation of the multivariate normal covariance matrix
-
13. L. R. Haff, Empirical Bayes estimation of the multivariate normal covariance matrix, Ann. Statist. 8 (1980), 586-597.
-
(1980)
Ann. Statist.
, vol.8
, pp. 586-597
-
-
Haff, L.R.1
-
14
-
-
0000202526
-
Bessel functions of matrix argument
-
14. C. S. Herz, Bessel functions of matrix argument, Ann. Math. 61 (1955), 474-523.
-
(1955)
Ann. Math.
, vol.61
, pp. 474-523
-
-
Herz, C.S.1
-
15
-
-
0001486499
-
Estimation with quadratic loss
-
University of California Press, Berkeley
-
15. W. James and C. Stein, Estimation with quadratic loss, in "Proc. Fourth Berkeley Symp. Math. Statist. Prob.," Vol. 1, pp. 361-379, University of California Press, Berkeley, 1961.
-
(1961)
Proc. Fourth Berkeley Symp. Math. Statist. Prob.
, vol.1
, pp. 361-379
-
-
James, W.1
Stein, C.2
-
16
-
-
38249038294
-
Bayes prediction in the linear model with spherically symmetric errors
-
16. S. R. Jammalamadaka, R. C. Tiwari, and S. Chib, Bayes prediction in the linear model with spherically symmetric errors, Econom. Lett. 24 (1987), 39-44.
-
(1987)
Econom. Lett.
, vol.24
, pp. 39-44
-
-
Jammalamadaka, S.R.1
Tiwari, R.C.2
Chib, S.3
-
17
-
-
0029843085
-
Exact t and F tests for analyzing studies with multiple endpoints
-
17. J. Läuter, Exact t and F tests for analyzing studies with multiple endpoints, Biometrics 52 (1996), 964-970.
-
(1996)
Biometrics
, vol.52
, pp. 964-970
-
-
Läuter, J.1
-
18
-
-
0042688770
-
New multivariate tests for data with an inherent structure
-
18. J. Läuter, F. Glimm, and S. Kropf, New multivariate tests for data with an inherent structure, Biometrical J. 38 (1996), 5-23.
-
(1996)
Biometrical J.
, vol.38
, pp. 5-23
-
-
Läuter, J.1
Glimm, F.2
Kropf, S.3
-
19
-
-
0009303226
-
Some subclasses of spherical matrix
-
19. R. Z. Li, Some subclasses of spherical matrix, J. Grad. School Acad. Sinica 9 (1992), 125-140.
-
(1992)
J. Grad. School Acad. Sinica
, vol.9
, pp. 125-140
-
-
Li, R.Z.1
-
20
-
-
38249002647
-
The characteristic functions of spherical matrix distributions
-
20. R. Z. Li, The characteristic functions of spherical matrix distributions, Statist. Probab. Lett. 17 (1993), 273-279.
-
(1993)
Statist. Probab. Lett.
, vol.17
, pp. 273-279
-
-
Li, R.Z.1
-
21
-
-
85030065603
-
-
Ph.D. dissertation, Department of Mathematics, Hong Kong Baptist University
-
21. J. J. Liang, "Testing Multinormality, Spherical and Elliptical Symmetry," Ph.D. dissertation, Department of Mathematics, Hong Kong Baptist University, 1998.
-
(1998)
Testing Multinormality, Spherical and Elliptical Symmetry
-
-
Liang, J.J.1
-
23
-
-
0001424686
-
Estimating covariance in a multivariate normal distribution
-
S. S. Gupta and D. Moore, Eds., Academic Press, New York
-
23. I. Olkin and J. B. Selliah, Estimating covariance in a multivariate normal distribution, in "Statistical Decision Theory and Related Topics, II" (S. S. Gupta and D. Moore, Eds.), pp. 313-326, Academic Press, New York, 1977.
-
(1977)
Statistical Decision Theory and Related Topics
, vol.2
, pp. 313-326
-
-
Olkin, I.1
Selliah, J.B.2
-
24
-
-
0009220296
-
A note on Bayesian inference in a regression model with regression errors
-
24. J. Osiewalski A note on Bayesian inference in a regression model with regression errors, J. Econometrics 48 (1991), 183-193.
-
(1991)
J. Econometrics
, vol.48
, pp. 183-193
-
-
Osiewalski, J.1
-
25
-
-
38249002035
-
Robust Bayesian inference in elliptical regression models
-
25. J. Osiewalski and M. F. J. Steel, Robust Bayesian inference in elliptical regression models, J. Econometrics 57 (1993a), 345-363.
-
(1993)
J. Econometrics
, vol.57
, pp. 345-363
-
-
Osiewalski, J.1
Steel, M.F.J.2
-
27
-
-
0003662251
-
-
Holt, Rinehart & Winston, New York
-
27. S. J. Press, "Applied Multivariate Analysis," 2nd ed., Holt, Rinehart & Winston, New York, 1982.
-
(1982)
"Applied Multivariate Analysis," 2nd Ed.
-
-
Press, S.J.1
-
28
-
-
0009150587
-
A generalized class of estimators in linear regression models with multivariate-t distributed error
-
28. P. K. Sing, S. Misra, and S. K. Pandey, A generalized class of estimators in linear regression models with multivariate-t distributed error, Statist. Probab. Lett. 23 (1995), 171-178.
-
(1995)
Statist. Probab. Lett.
, vol.23
, pp. 171-178
-
-
Sing, P.K.1
Misra, S.2
Pandey, S.K.3
-
29
-
-
0000723104
-
Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms
-
29. A. Zellner, Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms, J. Amer. Statist. Assoc 71 (1976), 400-405.
-
(1976)
J. Amer. Statist. Assoc
, vol.71
, pp. 400-405
-
-
Zellner, A.1
|