메뉴 건너뛰기




Volumn 6, Issue 2, 1999, Pages 173-182

Computational analyses in cognitive neuroscience: In defense of biological implausibility

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGY; COGNITION; HUMAN; METHODOLOGY; NEUROSCIENCE; STATISTICAL MODEL;

EID: 0033139146     PISSN: 10699384     EISSN: None     Source Type: Journal    
DOI: 10.3758/BF03212325     Document Type: Article
Times cited : (14)

References (55)
  • 1
    • 0006452334 scopus 로고
    • Biology and sufficiency in connectionist theory
    • J. Dinsmore (Ed.), Hillsdale, NJ: Erlbaum
    • AIZAWA, K. (1992). Biology and sufficiency in connectionist theory. In J. Dinsmore (Ed.), The symbolic and connectionist paradigms (pp. 69-88). Hillsdale, NJ: Erlbaum.
    • (1992) The Symbolic and Connectionist Paradigms , pp. 69-88
    • Aizawa, K.1
  • 3
    • 0002468551 scopus 로고
    • Reverse engineering the nervous system: An anatomical, physiological, and computer-based approach
    • S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), San Diego: Academic Press
    • BOWER, J. M. (1990). Reverse engineering the nervous system: An anatomical, physiological, and computer-based approach. In S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), An introduction to neural and electronic networks (pp. 3-24). San Diego: Academic Press.
    • (1990) An Introduction to Neural and Electronic Networks , pp. 3-24
    • Bower, J.M.1
  • 4
    • 0031060119 scopus 로고    scopus 로고
    • Biologically plausible neural computation
    • BUGMANN, G. (1997). Biologically plausible neural computation. Biosystems, 40, 11-19.
    • (1997) Biosystems , vol.40 , pp. 11-19
    • Bugmann, G.1
  • 6
    • 0004449398 scopus 로고
    • Three models for the description of language
    • CHOMSKY, N. (1956). Three models for the description of language. Transactions on Information Theory, 2, 113-124.
    • (1956) Transactions on Information Theory , vol.2 , pp. 113-124
    • Chomsky, N.1
  • 8
    • 0024490816 scopus 로고
    • The recent excitement about neural networks
    • CRICK, F. (1989). The recent excitement about neural networks. Nature, 337, 129-132.
    • (1989) Nature , vol.337 , pp. 129-132
    • Crick, F.1
  • 9
    • 0003167993 scopus 로고
    • Certain aspects of the anatomy and physiology of the cerebral cortex
    • J. L. McClelland & D. E. Rumelhart (Eds.), Cambridge, MA: MIT Press
    • CRICK, F., & ASANUMA, C. (1986). Certain aspects of the anatomy and physiology of the cerebral cortex. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing (Vol. 2, pp. 219-232). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing , vol.2 , pp. 219-232
    • Crick, F.1    Asanuma, C.2
  • 10
    • 30244534829 scopus 로고
    • Cognitive science as reverse engineering: Several meanings of "top down" and "bottom up."
    • D. Prawitz, B. Skyrms, & D. Westerstahl (Eds.), Amsterdam: North-Holland
    • DENNETT, D. C. (1994). Cognitive science as reverse engineering: Several meanings of "top down" and "bottom up." In D. Prawitz, B. Skyrms, & D. Westerstahl (Eds.), Proceedings of the Ninth International Congress of Logic, Methodology, and Philosophy of Science. Amsterdam: North-Holland.
    • (1994) Proceedings of the Ninth International Congress of Logic, Methodology, and Philosophy of Science
    • Dennett, D.C.1
  • 12
    • 0042017571 scopus 로고
    • Neural network models as tools for understanding high-level cognition: Developing paradigms for cognitive interpretation of neural network models
    • M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & A. S. Weigend (Eds.), Hillsdale, NJ: Erlbaum
    • DROR, I. E. (1994). Neural network models as tools for understanding high-level cognition: Developing paradigms for cognitive interpretation of neural network models. In M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, & A. S. Weigend (Eds.), Proceedings of the 1993 Connectionist Models Summer School (pp. 87-94). Hillsdale, NJ: Erlbaum.
    • (1994) Proceedings of the 1993 Connectionist Models Summer School , pp. 87-94
    • Dror, I.E.1
  • 13
    • 0042017557 scopus 로고    scopus 로고
    • Computational adaptations and cognitive strategy changes as compensation for age-related decline in cognitive resources
    • DROR, I. E. (1997). Computational adaptations and cognitive strategy changes as compensation for age-related decline in cognitive resources. Society for Neuroscience Abstracts, 23, 1457.
    • (1997) Society for Neuroscience Abstracts , vol.23 , pp. 1457
    • Dror, I.E.1
  • 14
    • 85034120033 scopus 로고    scopus 로고
    • Decision making under time pressure: An independent test of sequential sampling models
    • in press
    • DROR, I. E., BUSEMEYER, J. R., & BASOLA, B. (in press). Decision making under time pressure: An independent test of sequential sampling models. Memory & Cognition.
    • Memory & Cognition
    • Dror, I.E.1    Busemeyer, J.R.2    Basola, B.3
  • 15
    • 0030115390 scopus 로고    scopus 로고
    • Using artificial bat sonar neural network for complex pattern recognition: Recognizing faces and the speed of a moving target
    • DROR, I. E., FLORER, F. L., RIOS, D., & ZAGAESKI, M. (1996). Using artificial bat sonar neural network for complex pattern recognition: Recognizing faces and the speed of a moving target. Biological Cybernetics, 74, 331-338.
    • (1996) Biological Cybernetics , vol.74 , pp. 331-338
    • Dror, I.E.1    Florer, F.L.2    Rios, D.3    Zagaeski, M.4
  • 16
    • 0043019398 scopus 로고    scopus 로고
    • A computational investigation of dendritic growth as a compensatory mechanism for neuronal loss in the aging brain
    • DROR, I. E., & MORGRET, C. C. (1996). A computational investigation of dendritic growth as a compensatory mechanism for neuronal loss in the aging brain. Society for Neuroscience Abstracts, 22, 1891.
    • (1996) Society for Neuroscience Abstracts , vol.22 , pp. 1891
    • Dror, I.E.1    Morgret, C.C.2
  • 17
    • 0029061328 scopus 로고
    • Three-dimensional target recognition via sonar: A neural network model
    • DROR, I. E., ZAGAESKI, M., & MOSS, C. F. (1995). Three-dimensional target recognition via sonar: A neural network model. Neural Networks, 8, 149-160.
    • (1995) Neural Networks , vol.8 , pp. 149-160
    • Dror, I.E.1    Zagaeski, M.2    Moss, C.F.3
  • 18
    • 0023316617 scopus 로고
    • Modeling the neural substrates of associative learning and memory: A computational approach
    • GLUCK, M. A., & THOMPSON, R. F. (1987). Modeling the neural substrates of associative learning and memory: A computational approach. Psychological Review, 94, 176-191.
    • (1987) Psychological Review , vol.94 , pp. 176-191
    • Gluck, M.A.1    Thompson, R.F.2
  • 20
    • 5244352553 scopus 로고
    • Competitive learning: From interactive activation to adaptive resonance
    • GROSSBERG, S. (1987). Competitive learning: From interactive activation to adaptive resonance. Cognitive Science, 11, 23-63.
    • (1987) Cognitive Science , vol.11 , pp. 23-63
    • Grossberg, S.1
  • 22
    • 0001683059 scopus 로고
    • Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks
    • JACOBS, R. A., JORDAN, M. I., & BARTO, A. G. (1991). Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks. Cognitive Science, 15, 219-250.
    • (1991) Cognitive Science , vol.15 , pp. 219-250
    • Jacobs, R.A.1    Jordan, M.I.2    Barto, A.G.3
  • 23
    • 0028081448 scopus 로고
    • A model of the learning of arm trajectories from spatial deviations
    • JORDAN, M. I., FLASH, T., & ARNON, Y. (1994). A model of the learning of arm trajectories from spatial deviations. Journal of Cognitive Neuroscience, 6, 359-376.
    • (1994) Journal of Cognitive Neuroscience , vol.6 , pp. 359-376
    • Jordan, M.I.1    Flash, T.2    Arnon, Y.3
  • 24
    • 0027480539 scopus 로고
    • A neural network model of cortical activity during reaching
    • KETTNER, R., MARCARIO, J., & PORT, N. (1993). A neural network model of cortical activity during reaching. Journal of Cognitive Neuroscience, 5, 14-33.
    • (1993) Journal of Cognitive Neuroscience , vol.5 , pp. 14-33
  • 27
    • 0023940601 scopus 로고
    • Network model of shape-from-shading: Neural function arises from both receptive and projective fields
    • LEHKY, S. R., & SEJNOWSKI, T. J. (1988). Network model of shape-from-shading: Neural function arises from both receptive and projective fields. Nature, 333, 452-454.
    • (1988) Nature , vol.333 , pp. 452-454
    • Lehky, S.R.1    Sejnowski, T.J.2
  • 30
    • 0003834557 scopus 로고
    • San Francisco: Freeman
    • MARR, D. (1982). Vision. San Francisco: Freeman.
    • (1982) Vision
    • Marr, D.1
  • 31
    • 0026184726 scopus 로고
    • A more biologically plausible learning rule than backpropagation applied to a network model of cortical area 7a
    • MAZZONI, P., ANDERSEN, R. A., & JORDAN, M. I. (1991). A more biologically plausible learning rule than backpropagation applied to a network model of cortical area 7a. Cerebral Cortex, 1, 293-307.
    • (1991) Cerebral Cortex , vol.1 , pp. 293-307
    • Mazzoni, P.1    Andersen, R.A.2    Jordan, M.I.3
  • 32
    • 0029340352 scopus 로고
    • Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory
    • MCCLELLAND, J. L., MCNAUGHTON, B. L., & O'REILLY, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457.
    • (1995) Psychological Review , vol.102 , pp. 419-457
    • McClelland, J.L.1    McNaughton, B.L.2    O'Reilly, R.C.3
  • 33
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: The sequential learning problem
    • G. H. Bower (Ed.), New York: Academic Press
    • MCCLOSKEY, M., & COHEN, N. J. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 24, pp. 109-165). New York: Academic Press.
    • (1989) The Psychology of Learning and Motivation: Advances in Research and Theory , vol.24 , pp. 109-165
    • McCloskey, M.1    Cohen, N.J.2
  • 35
    • 0043019401 scopus 로고
    • Echoes from insects processed using time delayed spectrometry (TDS)
    • P. E. Nachtigall & P. W. B. Moore (Eds.), New York: Plenum
    • MILLER, L. A., & PEDERSEN, S. B. (1988). Echoes from insects processed using time delayed spectrometry (TDS). In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar, processes and performance. New York: Plenum.
    • (1988) Animal Sonar, Processes and Performance
    • Miller, L.A.1    Pedersen, S.B.2
  • 39
    • 0003016813 scopus 로고    scopus 로고
    • Applying Occam's razor in modeling cognition: A Bayesian approach
    • MYUNG, I. J., & PITT, M. A. (1997). Applying Occam's razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review, 4, 79-95.
    • (1997) Psychonomic Bulletin & Review , vol.4 , pp. 79-95
    • Myung, I.J.1    Pitt, M.A.2
  • 40
    • 0001569746 scopus 로고    scopus 로고
    • Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm
    • O'REILLY, R. C. (1996). Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation, 8, 895-938.
    • (1996) Neural Computation , vol.8 , pp. 895-938
    • O'Reilly, R.C.1
  • 42
    • 0024845029 scopus 로고
    • Why are "what" and "where" processed by separate cortical visual systems? A computational investigation
    • RUECKL, J. G., CAVE, K. R., & KOSSLYN, S. M. (1989). Why are "what" and "where" processed by separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience, 2, 171-186.
    • (1989) Journal of Cognitive Neuroscience , vol.2 , pp. 171-186
    • Rueckl, J.G.1    Cave, K.R.2    Kosslyn, S.M.3
  • 43
    • 0001897355 scopus 로고
    • Brain style computation: Learning and generalization
    • S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), San Diego: Academic Press
    • RUMELHART, D. E. (1990). Brain style computation: Learning and generalization. In S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), An introduction to neural and electric networks (pp. 405-420). San Diego: Academic Press.
    • (1990) An Introduction to Neural and Electric Networks , pp. 405-420
    • Rumelhart, D.E.1
  • 45
    • 0026844787 scopus 로고
    • Stimulus configuration, classic conditioning, and hippocampal function
    • SCHMAJUK, N. A., & DICARLO, J. J. (1992). Stimulus configuration, classic conditioning, and hippocampal function. Psychology Review, 99, 268-305.
    • (1992) Psychology Review , vol.99 , pp. 268-305
    • Schmajuk, N.A.1    Dicarlo, J.J.2
  • 46
    • 0026718728 scopus 로고
    • Perception of structured phantom targets in the echolocating bat, Megaderma lyra
    • SCHMIDT, S. (1992). Perception of structured phantom targets in the echolocating bat, Megaderma lyra. Journal of the Acoustical Society of America, 91, 2203-2223.
    • (1992) Journal of the Acoustical Society of America , vol.91 , pp. 2203-2223
    • Schmidt, S.1
  • 47
    • 0001566105 scopus 로고
    • Open question about computation in cerebral cortex
    • J. L. McClelland & D. E. Rumelhart (Eds.), Cambridge, MA: MIT Press
    • SEJNOWSKI, T. J. (1986). Open question about computation in cerebral cortex. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing (Vol. 2, pp. 372-389). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing , vol.2 , pp. 372-389
    • Sejnowski, T.J.1
  • 49
    • 0025370146 scopus 로고
    • Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus
    • SIMMONS, J. A., MOSS, C. F., & FERRAGAMO, M. (1990). Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A, 166, 449-470.
    • (1990) Journal of Comparative Physiology A , vol.166 , pp. 449-470
    • Simmons, J.A.1    Moss, C.F.2    Ferragamo, M.3
  • 50
    • 0041516497 scopus 로고
    • A biological neural network analysis of learning and memory
    • S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), San Diego: Academic Press
    • THOMPSON, R. F., & GLUCK, M. A. (1990). A biological neural network analysis of learning and memory. In S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), An introduction to neural and electronic networks (pp. 91-107). San Diego: Academic Press.
    • (1990) An Introduction to Neural and Electronic Networks , pp. 91-107
    • Thompson, R.F.1    Gluck, M.A.2
  • 51
    • 0042518410 scopus 로고
    • A feature-integration theory of attention
    • TREISMAN, A., & GELADE, G. (1980). A feature-integration theory of attention. Cognitive Science, 12, 99-136.
    • (1980) Cognitive Science , vol.12 , pp. 99-136
    • Treisman, A.1    Gelade, G.2
  • 52
    • 0023716924 scopus 로고
    • Feature analysis in early vision: Evidence from search asymmetries
    • TREISMAN, A., & GORMICAN, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15-48.
    • (1988) Psychological Review , vol.95 , pp. 15-48
    • Treisman, A.1    Gormican, S.2
  • 53
    • 0038341540 scopus 로고
    • Analyzing vision at the complexity level
    • TSOTSOS, J. K. (1990). Analyzing vision at the complexity level. Behavioral & Brain Science, 13, 423-444.
    • (1990) Behavioral & Brain Science , vol.13 , pp. 423-444
    • Tsotsos, J.K.1
  • 54
    • 84971707658 scopus 로고
    • Is complexity theory appropriate for analyzing biological systems?
    • TSOTSOS, J. K. (1991). Is complexity theory appropriate for analyzing biological systems? Behavioral & Brain Science, 14, 770-773.
    • (1991) Behavioral & Brain Science , vol.14 , pp. 770-773
    • Tsotsos, J.K.1
  • 55
    • 0023877474 scopus 로고
    • A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons
    • ZIPSER, D., & ANDERSEN, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331, 679-684.
    • (1988) Nature , vol.331 , pp. 679-684
    • Zipser, D.1    Andersen, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.