-
1
-
-
84987539064
-
On Hamiltonian properties of 2-tough graphs
-
[1] D. Bauer, H.J. Broersma, J. van den Heuvel, and H.J. Veldman, On Hamiltonian properties of 2-tough graphs, J Graph Theory 18 (1994), 539-543.
-
(1994)
J Graph Theory
, vol.18
, pp. 539-543
-
-
Bauer, D.1
Broersma, H.J.2
Van Den Heuvel, J.3
Veldman, H.J.4
-
3
-
-
38149148493
-
On the complexity of recognizing tough graphs
-
[3] D. Bauer, A. Morgana, and E. Schmeichel, On the complexity of recognizing tough graphs, Discr Math 124 (1994), 13-17.
-
(1994)
Discr Math
, vol.124
, pp. 13-17
-
-
Bauer, D.1
Morgana, A.2
Schmeichel, E.3
-
5
-
-
0009250099
-
-
Personal communication
-
[5] A.E. Brouwer, Personal communication, 1998.
-
(1998)
-
-
Brouwer, A.E.1
-
6
-
-
0004105436
-
-
Springer-Verlag, Berlin, Heidelberg
-
[6] A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
-
(1989)
Distance-regular Graphs
-
-
Brouwer, A.E.1
Cohen, A.M.2
Neumaier, A.3
-
7
-
-
0001112745
-
The square of a block is Hamiltonian connected
-
[7] G. Chartrand, A.M. Hobbs, and H.A. Jung, The square of a block is Hamiltonian connected, J Combin Theory B 16 (1974), 290-292.
-
(1974)
J Combin Theory B
, vol.16
, pp. 290-292
-
-
Chartrand, G.1
Hobbs, A.M.2
Jung, H.A.3
-
8
-
-
36949016322
-
Tough graphs and Hamiltonian circuits
-
[8] V. Chvátal, Tough graphs and Hamiltonian circuits, Discr Math 5 (1973), 215-228.
-
(1973)
Discr Math
, vol.5
, pp. 215-228
-
-
Chvátal, V.1
-
9
-
-
0000987135
-
A note on Hamiltonian circuits
-
[9] V. Chvátal and P. Erdös, A note on Hamiltonian circuits, Discr Math 2 (1972), 111-113.
-
(1972)
Discr Math
, vol.2
, pp. 111-113
-
-
Chvátal, V.1
Erdös, P.2
-
10
-
-
84986435992
-
Toughness and the existence of k-factors
-
[10] H. Enomoto, B. Jackson, P. Katerinis, and A. Saito, Toughness and the existence of k-factors, J Graph Theory 9 (1985), 87-95.
-
(1985)
J Graph Theory
, vol.9
, pp. 87-95
-
-
Enomoto, H.1
Jackson, B.2
Katerinis, P.3
Saito, A.4
-
11
-
-
0001831598
-
The square of every 2-connected graph is Hamiltonian
-
[11] H. Fleischner, The square of every 2-connected graph is Hamiltonian, J Combin Theory B 16 (1974), 29-34.
-
(1974)
J Combin Theory B
, vol.16
, pp. 29-34
-
-
Fleischner, H.1
-
13
-
-
85033951209
-
-
Personal communication, J.A. Bondy, H.J. Broersma, C. Hoede, and H.J. Veldman (Editors), Networks, to appear
-
[13] J. van den Heuvel, Personal communication, 1995. Also in EIDMA workshop on Hamiltonicity of 2-tough graphs: Progress report, J.A. Bondy, H.J. Broersma, C. Hoede, and H.J. Veldman (Editors), Networks, to appear.
-
(1995)
Also in EIDMA Workshop on Hamiltonicity of 2-tough Graphs: Progress Report
-
-
Van Den Heuvel, J.1
-
14
-
-
0002297833
-
Note on Hamiltonian circuits
-
[14] O. Ore, Note on Hamiltonian circuits, Am Math Monthly 67 (1960), 55.
-
(1960)
Am Math Monthly
, vol.67
, pp. 55
-
-
Ore, O.1
|